prepare_data.py 9.6 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
import os
import sys
import shutil
import numpy as np
import json
import pickle
import argparse

Yizhou Wang's avatar
Yizhou Wang committed
9
10
11
from cruw import CRUW
from cruw.annotation.init_json import init_meta_json
from cruw.mapping import ra2idx
Yizhou Wang's avatar
Yizhou Wang committed
12
13
14
15
16
17
18
19
20
21
22
23

from rodnet.core.confidence_map import generate_confmap, normalize_confmap, add_noise_channel
from rodnet.utils.load_configs import load_configs_from_file
from rodnet.utils.visualization import visualize_confmap

SPLITS_LIST = ['train', 'valid', 'test', 'demo']


def parse_args():
    parser = argparse.ArgumentParser(description='Prepare RODNet data.')
    parser.add_argument('--config', type=str, dest='config', help='configuration file path')
    parser.add_argument('--data_root', type=str, help='directory to the prepared data')
24
    parser.add_argument('--sensor_config', type=str, default='sensor_config_rod2021')
yizhou-wang's avatar
yizhou-wang committed
25
26
    parser.add_argument('--split', type=str, dest='split', default='',
                        help='choose from train, valid, test, supertest')
Yizhou Wang's avatar
Yizhou Wang committed
27
28
29
30
31
32
33
    parser.add_argument('--out_data_dir', type=str, default='./data',
                        help='data directory to save the prepared data')
    parser.add_argument('--overwrite', action="store_true", help="overwrite prepared data if exist")
    args = parser.parse_args()
    return args


Yizhou Wang's avatar
Yizhou Wang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def load_anno_txt(txt_path, n_frame, dataset):
    folder_name_dict = dict(
        cam_0='IMAGES_0',
        rad_h='RADAR_RA_H'
    )
    anno_dict = init_meta_json(n_frame, folder_name_dict)
    with open(txt_path, 'r') as f:
        data = f.readlines()
    for line in data:
        frame_id, r, a, class_name = line.rstrip().split()
        frame_id = int(frame_id)
        r = float(r)
        a = float(a)
        rid, aid = ra2idx(r, a, dataset.range_grid, dataset.angle_grid)
        anno_dict[frame_id]['rad_h']['n_objects'] += 1
        anno_dict[frame_id]['rad_h']['obj_info']['categories'].append(class_name)
        anno_dict[frame_id]['rad_h']['obj_info']['centers'].append([r, a])
        anno_dict[frame_id]['rad_h']['obj_info']['center_ids'].append([rid, aid])
        anno_dict[frame_id]['rad_h']['obj_info']['scores'].append(1.0)

    return anno_dict


def generate_confmaps(metadata_dict, n_class, viz):
    confmaps = []
    for metadata_frame in metadata_dict:
        n_obj = metadata_frame['rad_h']['n_objects']
        obj_info = metadata_frame['rad_h']['obj_info']
        if n_obj == 0:
            confmap_gt = np.zeros(
                (n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize']),
                dtype=float)
            confmap_gt[-1, :, :] = 1.0  # initialize noise channal
        else:
            confmap_gt = generate_confmap(n_obj, obj_info, dataset, config_dict)
            confmap_gt = normalize_confmap(confmap_gt)
            confmap_gt = add_noise_channel(confmap_gt, dataset, config_dict)
        assert confmap_gt.shape == (
            n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
        if viz:
            visualize_confmap(confmap_gt)
        confmaps.append(confmap_gt)
    confmaps = np.array(confmaps)
    return confmaps


Yizhou Wang's avatar
Yizhou Wang committed
80
81
82
83
84
85
86
def prepare_data(dataset, config_dict, data_dir, split, save_dir, viz=False, overwrite=False):
    """
    Prepare pickle data for RODNet training and testing
    :param dataset: dataset object
    :param config_dict: rodnet configurations
    :param data_dir: output directory of the processed data
    :param split: train, valid, test, demo, etc.
Yizhou Wang's avatar
Yizhou Wang committed
87
    :param save_dir: output directory of the prepared data
Yizhou Wang's avatar
Yizhou Wang committed
88
89
90
91
92
93
94
95
96
97
98
    :param viz: whether visualize the prepared data
    :param overwrite: whether overwrite the existing prepared data
    :return:
    """
    camera_configs = dataset.sensor_cfg.camera_cfg
    radar_configs = dataset.sensor_cfg.radar_cfg
    n_chirp = radar_configs['n_chirps']
    n_class = dataset.object_cfg.n_class

    data_root = config_dict['dataset_cfg']['data_root']
    anno_root = config_dict['dataset_cfg']['anno_root']
99
    if split is None:
yizhou-wang's avatar
yizhou-wang committed
100
101
102
103
104
        set_cfg = {
            'subdir': '',
            'seqs': sorted(os.listdir(data_root))
        }
        sets_seqs = sorted(os.listdir(data_root))
Yizhou Wang's avatar
Yizhou Wang committed
105
    else:
yizhou-wang's avatar
yizhou-wang committed
106
107
108
109
110
        set_cfg = config_dict['dataset_cfg'][split]
        if 'seqs' not in set_cfg:
            sets_seqs = sorted(os.listdir(os.path.join(data_root, set_cfg['subdir'])))
        else:
            sets_seqs = set_cfg['seqs']
Yizhou Wang's avatar
Yizhou Wang committed
111
112
113
114
115
116
117

    if overwrite:
        if os.path.exists(os.path.join(data_dir, split)):
            shutil.rmtree(os.path.join(data_dir, split))
        os.makedirs(os.path.join(data_dir, split))

    for seq in sets_seqs:
Yizhou Wang's avatar
Yizhou Wang committed
118
119
        seq_path = os.path.join(data_root, set_cfg['subdir'], seq)
        seq_anno_path = os.path.join(anno_root, set_cfg['subdir'], seq + config_dict['dataset_cfg']['anno_ext'])
Yizhou Wang's avatar
Yizhou Wang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        save_path = os.path.join(save_dir, seq + '.pkl')
        print("Sequence %s saving to %s" % (seq_path, save_path))

        try:
            if not overwrite and os.path.exists(save_path):
                print("%s already exists, skip" % save_path)
                continue
            image_dir = os.path.join(seq_path, camera_configs['image_folder'])
            image_paths = sorted([os.path.join(image_dir, name) for name in os.listdir(image_dir) if
                                  name.endswith(camera_configs['ext'])])
            n_frame = len(image_paths)

            radar_dir = os.path.join(seq_path, dataset.sensor_cfg.radar_cfg['chirp_folder'])
            if radar_configs['data_type'] == 'RI' or radar_configs['data_type'] == 'AP':
                radar_paths = sorted([os.path.join(radar_dir, name) for name in os.listdir(radar_dir) if
                                      name.endswith(dataset.sensor_cfg.radar_cfg['ext'])])
                n_radar_frame = len(radar_paths)
                assert n_frame == n_radar_frame
            elif radar_configs['data_type'] == 'RISEP' or radar_configs['data_type'] == 'APSEP':
                radar_paths_chirp = []
                for chirp_id in range(n_chirp):
                    chirp_dir = os.path.join(radar_dir, '%04d' % chirp_id)
                    paths = sorted([os.path.join(chirp_dir, name) for name in os.listdir(chirp_dir) if
                                    name.endswith(config_dict['dataset_cfg']['radar_cfg']['ext'])])
                    n_radar_frame = len(paths)
                    assert n_frame == n_radar_frame
                    radar_paths_chirp.append(paths)
                radar_paths = []
                for frame_id in range(n_frame):
                    frame_paths = []
                    for chirp_id in range(n_chirp):
                        frame_paths.append(radar_paths_chirp[chirp_id][frame_id])
                    radar_paths.append(frame_paths)
Yizhou Wang's avatar
Yizhou Wang committed
153
154
155
156
157
158
159
160
161
162
            elif radar_configs['data_type'] == 'ROD2021':
                assert len(os.listdir(radar_dir)) == n_frame * len(radar_configs['chirp_ids'])
                radar_paths = []
                for frame_id in range(n_frame):
                    chirp_paths = []
                    for chirp_id in radar_configs['chirp_ids']:
                        path = os.path.join(radar_dir, '%06d_%04d.' % (frame_id, chirp_id) +
                                            dataset.sensor_cfg.radar_cfg['ext'])
                        chirp_paths.append(path)
                    radar_paths.append(chirp_paths)
Yizhou Wang's avatar
Yizhou Wang committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            else:
                raise ValueError

            data_dict = dict(
                data_root=data_root,
                data_path=seq_path,
                seq_name=seq,
                n_frame=n_frame,
                image_paths=image_paths,
                radar_paths=radar_paths,
                anno=None,
            )

            if split == 'demo':
                # no labels need to be saved
                pickle.dump(data_dict, open(save_path, 'wb'))
                continue
            else:
                anno_obj = {}
Yizhou Wang's avatar
Yizhou Wang committed
182
183
                if config_dict['dataset_cfg']['anno_ext'] == '.txt':
                    anno_obj['metadata'] = load_anno_txt(seq_anno_path, n_frame, dataset)
Yizhou Wang's avatar
Yizhou Wang committed
184

Yizhou Wang's avatar
Yizhou Wang committed
185
186
187
188
189
190
191
192
193
                elif config_dict['dataset_cfg']['anno_ext'] == '.json':
                    with open(os.path.join(seq_anno_path), 'r') as f:
                        anno = json.load(f)
                    anno_obj['metadata'] = anno['metadata']
                else:
                    raise

                anno_obj['confmaps'] = generate_confmaps(anno_obj['metadata'], n_class, viz)
                data_dict['anno'] = anno_obj
Yizhou Wang's avatar
Yizhou Wang committed
194
195
196
197
198
199
200
201
202
203
204
                # save pkl files
                pickle.dump(data_dict, open(save_path, 'wb'))
            # end frames loop

        except Exception as e:
            print("Error while preparing %s: %s" % (seq_path, e))


if __name__ == "__main__":
    args = parse_args()
    data_root = args.data_root
yizhou-wang's avatar
yizhou-wang committed
205
    if args.split == '':
yizhou-wang's avatar
yizhou-wang committed
206
207
208
        splits = None
    else:
        splits = args.split.split(',')
Yizhou Wang's avatar
Yizhou Wang committed
209
    out_data_dir = args.out_data_dir
yizhou-wang's avatar
yizhou-wang committed
210
    os.makedirs(out_data_dir, exist_ok=True)
Yizhou Wang's avatar
Yizhou Wang committed
211
212
    overwrite = args.overwrite

yizhou-wang's avatar
yizhou-wang committed
213
    dataset = CRUW(data_root=data_root, sensor_config_name=args.sensor_config)
Yizhou Wang's avatar
Yizhou Wang committed
214
215
216
    config_dict = load_configs_from_file(args.config)
    radar_configs = dataset.sensor_cfg.radar_cfg

yizhou-wang's avatar
yizhou-wang committed
217
218
219
220
221
222
223
    if splits == None:
        prepare_data(dataset, config_dict, out_data_dir, split=None, save_dir=out_data_dir, viz=False,
                     overwrite=overwrite)
    else:
        for split in splits:
            if split not in SPLITS_LIST:
                raise TypeError("split %s cannot be recognized" % split)
Yizhou Wang's avatar
Yizhou Wang committed
224

yizhou-wang's avatar
yizhou-wang committed
225
226
227
228
        for split in splits:
            save_dir = os.path.join(out_data_dir, split)
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
Yizhou Wang's avatar
Yizhou Wang committed
229

yizhou-wang's avatar
yizhou-wang committed
230
231
            print('Preparing %s sets ...' % split)
            prepare_data(dataset, config_dict, out_data_dir, split, save_dir, viz=False, overwrite=overwrite)