prepare_data.py 8.97 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
import os
import sys
import shutil
import numpy as np
import json
import pickle
import argparse

Yizhou Wang's avatar
Yizhou Wang committed
9
10
11
from cruw import CRUW
from cruw.annotation.init_json import init_meta_json
from cruw.mapping import ra2idx
Yizhou Wang's avatar
Yizhou Wang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from rodnet.core.confidence_map import generate_confmap, normalize_confmap, add_noise_channel
from rodnet.utils.load_configs import load_configs_from_file
from rodnet.utils.visualization import visualize_confmap

SPLITS_LIST = ['train', 'valid', 'test', 'demo']


def parse_args():
    parser = argparse.ArgumentParser(description='Prepare RODNet data.')
    parser.add_argument('--config', type=str, dest='config', help='configuration file path')
    parser.add_argument('--data_root', type=str, help='directory to the prepared data')
    parser.add_argument('--split', type=str, dest='split', help='choose from train, valid, test, supertest')
    parser.add_argument('--out_data_dir', type=str, default='./data',
                        help='data directory to save the prepared data')
    parser.add_argument('--overwrite', action="store_true", help="overwrite prepared data if exist")
    args = parser.parse_args()
    return args


Yizhou Wang's avatar
Yizhou Wang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def load_anno_txt(txt_path, n_frame, dataset):
    folder_name_dict = dict(
        cam_0='IMAGES_0',
        rad_h='RADAR_RA_H'
    )
    anno_dict = init_meta_json(n_frame, folder_name_dict)
    with open(txt_path, 'r') as f:
        data = f.readlines()
    for line in data:
        frame_id, r, a, class_name = line.rstrip().split()
        frame_id = int(frame_id)
        r = float(r)
        a = float(a)
        rid, aid = ra2idx(r, a, dataset.range_grid, dataset.angle_grid)
        anno_dict[frame_id]['rad_h']['n_objects'] += 1
        anno_dict[frame_id]['rad_h']['obj_info']['categories'].append(class_name)
        anno_dict[frame_id]['rad_h']['obj_info']['centers'].append([r, a])
        anno_dict[frame_id]['rad_h']['obj_info']['center_ids'].append([rid, aid])
        anno_dict[frame_id]['rad_h']['obj_info']['scores'].append(1.0)

    return anno_dict


def generate_confmaps(metadata_dict, n_class, viz):
    confmaps = []
    for metadata_frame in metadata_dict:
        n_obj = metadata_frame['rad_h']['n_objects']
        obj_info = metadata_frame['rad_h']['obj_info']
        if n_obj == 0:
            confmap_gt = np.zeros(
                (n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize']),
                dtype=float)
            confmap_gt[-1, :, :] = 1.0  # initialize noise channal
        else:
            confmap_gt = generate_confmap(n_obj, obj_info, dataset, config_dict)
            confmap_gt = normalize_confmap(confmap_gt)
            confmap_gt = add_noise_channel(confmap_gt, dataset, config_dict)
        assert confmap_gt.shape == (
            n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
        if viz:
            visualize_confmap(confmap_gt)
        confmaps.append(confmap_gt)
    confmaps = np.array(confmaps)
    return confmaps


Yizhou Wang's avatar
Yizhou Wang committed
78
79
80
81
82
83
84
def prepare_data(dataset, config_dict, data_dir, split, save_dir, viz=False, overwrite=False):
    """
    Prepare pickle data for RODNet training and testing
    :param dataset: dataset object
    :param config_dict: rodnet configurations
    :param data_dir: output directory of the processed data
    :param split: train, valid, test, demo, etc.
Yizhou Wang's avatar
Yizhou Wang committed
85
    :param save_dir: output directory of the prepared data
Yizhou Wang's avatar
Yizhou Wang committed
86
87
88
89
90
91
92
93
94
95
96
97
    :param viz: whether visualize the prepared data
    :param overwrite: whether overwrite the existing prepared data
    :return:
    """
    camera_configs = dataset.sensor_cfg.camera_cfg
    radar_configs = dataset.sensor_cfg.radar_cfg
    n_chirp = radar_configs['n_chirps']
    n_class = dataset.object_cfg.n_class

    data_root = config_dict['dataset_cfg']['data_root']
    anno_root = config_dict['dataset_cfg']['anno_root']
    set_cfg = config_dict['dataset_cfg'][split]
Yizhou Wang's avatar
Yizhou Wang committed
98
99
100
101
    if 'seqs' not in set_cfg:
        sets_seqs = sorted(os.listdir(os.path.join(data_root, set_cfg['subdir'])))
    else:
        sets_seqs = set_cfg['seqs']
Yizhou Wang's avatar
Yizhou Wang committed
102
103
104
105
106
107
108

    if overwrite:
        if os.path.exists(os.path.join(data_dir, split)):
            shutil.rmtree(os.path.join(data_dir, split))
        os.makedirs(os.path.join(data_dir, split))

    for seq in sets_seqs:
Yizhou Wang's avatar
Yizhou Wang committed
109
110
        seq_path = os.path.join(data_root, set_cfg['subdir'], seq)
        seq_anno_path = os.path.join(anno_root, set_cfg['subdir'], seq + config_dict['dataset_cfg']['anno_ext'])
Yizhou Wang's avatar
Yizhou Wang committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        save_path = os.path.join(save_dir, seq + '.pkl')
        print("Sequence %s saving to %s" % (seq_path, save_path))

        try:
            if not overwrite and os.path.exists(save_path):
                print("%s already exists, skip" % save_path)
                continue
            image_dir = os.path.join(seq_path, camera_configs['image_folder'])
            image_paths = sorted([os.path.join(image_dir, name) for name in os.listdir(image_dir) if
                                  name.endswith(camera_configs['ext'])])
            n_frame = len(image_paths)

            radar_dir = os.path.join(seq_path, dataset.sensor_cfg.radar_cfg['chirp_folder'])
            if radar_configs['data_type'] == 'RI' or radar_configs['data_type'] == 'AP':
                radar_paths = sorted([os.path.join(radar_dir, name) for name in os.listdir(radar_dir) if
                                      name.endswith(dataset.sensor_cfg.radar_cfg['ext'])])
                n_radar_frame = len(radar_paths)
                assert n_frame == n_radar_frame
            elif radar_configs['data_type'] == 'RISEP' or radar_configs['data_type'] == 'APSEP':
                radar_paths_chirp = []
                for chirp_id in range(n_chirp):
                    chirp_dir = os.path.join(radar_dir, '%04d' % chirp_id)
                    paths = sorted([os.path.join(chirp_dir, name) for name in os.listdir(chirp_dir) if
                                    name.endswith(config_dict['dataset_cfg']['radar_cfg']['ext'])])
                    n_radar_frame = len(paths)
                    assert n_frame == n_radar_frame
                    radar_paths_chirp.append(paths)
                radar_paths = []
                for frame_id in range(n_frame):
                    frame_paths = []
                    for chirp_id in range(n_chirp):
                        frame_paths.append(radar_paths_chirp[chirp_id][frame_id])
                    radar_paths.append(frame_paths)
Yizhou Wang's avatar
Yizhou Wang committed
144
145
146
147
148
149
150
151
152
153
            elif radar_configs['data_type'] == 'ROD2021':
                assert len(os.listdir(radar_dir)) == n_frame * len(radar_configs['chirp_ids'])
                radar_paths = []
                for frame_id in range(n_frame):
                    chirp_paths = []
                    for chirp_id in radar_configs['chirp_ids']:
                        path = os.path.join(radar_dir, '%06d_%04d.' % (frame_id, chirp_id) +
                                            dataset.sensor_cfg.radar_cfg['ext'])
                        chirp_paths.append(path)
                    radar_paths.append(chirp_paths)
Yizhou Wang's avatar
Yizhou Wang committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            else:
                raise ValueError

            data_dict = dict(
                data_root=data_root,
                data_path=seq_path,
                seq_name=seq,
                n_frame=n_frame,
                image_paths=image_paths,
                radar_paths=radar_paths,
                anno=None,
            )

            if split == 'demo':
                # no labels need to be saved
                pickle.dump(data_dict, open(save_path, 'wb'))
                continue
            else:
                anno_obj = {}
Yizhou Wang's avatar
Yizhou Wang committed
173
174
                if config_dict['dataset_cfg']['anno_ext'] == '.txt':
                    anno_obj['metadata'] = load_anno_txt(seq_anno_path, n_frame, dataset)
Yizhou Wang's avatar
Yizhou Wang committed
175

Yizhou Wang's avatar
Yizhou Wang committed
176
177
178
179
180
181
182
183
184
                elif config_dict['dataset_cfg']['anno_ext'] == '.json':
                    with open(os.path.join(seq_anno_path), 'r') as f:
                        anno = json.load(f)
                    anno_obj['metadata'] = anno['metadata']
                else:
                    raise

                anno_obj['confmaps'] = generate_confmaps(anno_obj['metadata'], n_class, viz)
                data_dict['anno'] = anno_obj
Yizhou Wang's avatar
Yizhou Wang committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                # save pkl files
                pickle.dump(data_dict, open(save_path, 'wb'))
            # end frames loop

        except Exception as e:
            print("Error while preparing %s: %s" % (seq_path, e))


if __name__ == "__main__":
    args = parse_args()
    data_root = args.data_root
    splits = args.split.split(',')
    out_data_dir = args.out_data_dir
    overwrite = args.overwrite

Yizhou Wang's avatar
Yizhou Wang committed
200
    dataset = CRUW(data_root=data_root, sensor_config_name='sensor_config_rod2021')
Yizhou Wang's avatar
Yizhou Wang committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    config_dict = load_configs_from_file(args.config)
    radar_configs = dataset.sensor_cfg.radar_cfg

    for split in splits:
        if split not in SPLITS_LIST:
            raise TypeError("split %s cannot be recognized" % split)

    for split in splits:
        save_dir = os.path.join(out_data_dir, split)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        print('Preparing %s sets ...' % split)
        prepare_data(dataset, config_dict, out_data_dir, split, save_dir, viz=False, overwrite=overwrite)