render_textured_meshes.ipynb 23.5 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
   "outputs": [],
   "source": [
    "# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved."
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
50
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
    "If `torch`, `torchvision` and `pytorch3d` are not installed, run the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
67
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
    "!pip install torch torchvision\n",
68
    "import os\n",
69
    "import sys\n",
70
    "import torch\n",
71
72
73
    "if torch.__version__=='1.6.0+cu101' and sys.platform.startswith('linux'):\n",
    "    !pip install pytorch3d\n",
    "else:\n",
74
75
76
77
78
79
80
81
82
83
    "    need_pytorch3d=False\n",
    "    try:\n",
    "        import pytorch3d\n",
    "    except ModuleNotFoundError:\n",
    "        need_pytorch3d=True\n",
    "    if need_pytorch3d:\n",
    "        !curl -O https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz\n",
    "        !tar xzf 1.10.0.tar.gz\n",
    "        os.environ[\"CUB_HOME\"] = os.getcwd() + \"/cub-1.10.0\"\n",
    "        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
84
85
86
87
   ]
  },
  {
   "cell_type": "code",
88
   "execution_count": null,
89
90
91
92
93
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
94
95
96
97
98
99
100
101
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from skimage.io import imread\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
102
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
103
104
    "\n",
    "# Data structures and functions for rendering\n",
105
    "from pytorch3d.structures import Meshes\n",
106
107
    "from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene\n",
    "from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib\n",
facebook-github-bot's avatar
facebook-github-bot committed
108
109
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
110
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
111
112
113
114
115
116
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
117
    "    SoftPhongShader,\n",
118
119
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
120
121
    ")\n",
    "\n",
122
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
123
124
    "import sys\n",
    "import os\n",
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
140
   "execution_count": null,
141
142
143
144
145
146
147
148
149
150
151
152
153
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/master/docs/tutorials/utils/plot_image_grid.py\n",
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
154
155
156
157
158
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
159
160
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
161
162
   },
   "source": [
163
164
165
166
167
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
168
   "execution_count": null,
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
    "\n",
    "Load an `.obj` file and it's associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
    "\n",
190
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
191
    "\n",
192
    "**TexturesUV** is an auxillary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
193
194
195
196
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
197
198
199
200
201
202
203
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
204
205
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
206
207
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
208
209
  {
   "cell_type": "code",
210
   "execution_count": null,
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
230
   "execution_count": null,
231
232
233
234
235
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
236
237
238
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
239
240
241
242
243
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
244
245
246
247
248
249
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
250
    "mesh = load_objs_as_meshes([obj_filename], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
251
252
253
254
   ]
  },
  {
   "cell_type": "markdown",
255
256
257
258
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
259
260
261
262
263
264
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
265
   "execution_count": null,
266
267
268
269
270
271
272
273
274
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
275
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
276
277
   "source": [
    "plt.figure(figsize=(7,7))\n",
278
    "texture_image=mesh.textures.maps_padded()\n",
facebook-github-bot's avatar
facebook-github-bot committed
279
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
280
    "plt.grid(\"off\");\n",
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    "plt.axis(\"off\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
301
302
303
304
   ]
  },
  {
   "cell_type": "markdown",
305
306
307
308
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
309
   "source": [
310
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
311
    "\n",
312
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
313
314
315
316
317
318
    "\n",
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **phong shading**. Then we learn how to vary different components using the modular API.  "
   ]
  },
  {
   "cell_type": "code",
319
   "execution_count": null,
320
321
322
323
324
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
325
326
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
327
    "# Initialize a camera.\n",
328
329
330
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
331
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
332
333
334
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
335
336
337
338
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
339
340
341
342
343
344
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
345
346
347
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
348
349
350
351
352
353
354
355
356
    "\n",
    "# Create a phong renderer by composing a rasterizer and a shader. The textured phong shader will \n",
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
357
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
358
359
360
361
362
363
364
365
366
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
367
368
369
370
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
371
   "source": [
372
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
373
374
375
376
   ]
  },
  {
   "cell_type": "markdown",
377
378
379
380
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
381
382
383
384
385
386
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
387
   "execution_count": null,
388
389
390
391
392
393
394
395
396
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
397
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
398
399
400
401
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
402
403
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
404
405
406
407
   ]
  },
  {
   "cell_type": "markdown",
408
409
410
411
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
412
   "source": [
413
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
414
415
416
417
418
419
420
421
422
423
    "\n",
    "We can pass arbirary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
424
   "execution_count": null,
425
426
427
428
429
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
430
431
   "outputs": [],
   "source": [
432
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
433
434
435
436
437
438
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
439
   "execution_count": null,
440
441
442
443
444
445
446
447
448
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
449
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
450
451
452
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
453
454
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
455
456
457
458
   ]
  },
  {
   "cell_type": "markdown",
459
460
461
462
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
463
   "source": [
464
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
465
466
467
468
469
470
471
472
473
474
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
475
   "execution_count": null,
476
477
478
479
480
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
481
482
   "outputs": [],
   "source": [
483
484
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
485
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
486
    "\n",
487
488
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
503
   "execution_count": null,
504
505
506
507
508
509
510
511
512
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
513
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
514
515
516
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
517
518
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
519
520
521
522
   ]
  },
  {
   "cell_type": "markdown",
523
524
525
526
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
527
   "source": [
528
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
529
    "\n",
530
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
531
532
533
534
535
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
536
   "execution_count": null,
537
538
539
540
541
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
542
543
544
545
546
547
548
549
550
551
552
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
553
554
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
555
556
557
558
559
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
560
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
561
    "\n",
562
563
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
564
565
566
567
   ]
  },
  {
   "cell_type": "code",
568
   "execution_count": null,
569
570
571
572
573
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
574
575
576
577
   "outputs": [],
   "source": [
    "# We can pass arbirary keyword arguments to the rasterizer/shader via the renderer\n",
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
578
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
579
580
581
582
   ]
  },
  {
   "cell_type": "code",
583
   "execution_count": null,
584
   "metadata": {},
585
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
586
587
588
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
589
  },
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
620
621
622
623
624
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
641
642
643
644
645
646
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
    "fig.show()"
647
648
649
650
651
652
653
654
655
656
657
658
659
660
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    "# plot mesh batch in the same trace\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh_batch\": mesh_batch\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different traces\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0],\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different subplots\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0]\n",
    "    },\n",
    "    \"subplot2\":{\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
709
710
711
712
713
714
715
716
717
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
718
    "mesh_4 = mesh_batch.extend(2)\n",
719
720
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
721
    "fig = plot_batch_individually(mesh_4)\n",
722
    "# we can update the figure height and width\n",
723
    "fig.update_layout(height=1000, width=500)\n",
724
725
726
727
728
729
730
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
731
    "We can also modify the axis arguments and axis backgrounds in both functions. "
732
733
734
735
736
737
738
739
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
740
741
742
743
744
745
746
747
748
    "fig2 = plot_scene({\n",
    "    \"cow_plot1\": {\n",
    "        \"cows\": mesh_batch\n",
    "    }\n",
    "},\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
749
750
751
    "fig2.show()"
   ]
  },
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig3 = plot_batch_individually(\n",
    "    mesh_4, \n",
    "    ncols=2,\n",
    "    subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
    "fig3.show()"
   ]
  },
769
770
771
772
773
774
775
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
776
777
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
778
   ]
facebook-github-bot's avatar
facebook-github-bot committed
779
780
781
  }
 ],
 "metadata": {
782
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
783
  "anp_metadata": {
784
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
785
  },
facebook-github-bot's avatar
facebook-github-bot committed
786
787
788
789
790
791
792
793
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
794
795
796
797
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
798
799
800
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
801
  "kernelspec": {
802
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
803
   "language": "python",
804
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
805
806
807
808
809
810
811
812
813
814
815
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
816
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
817
818
819
  }
 },
 "nbformat": 4,
820
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
821
}