render_textured_meshes.ipynb 23.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
   "outputs": [],
   "source": [
    "# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved."
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
50
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
    "If `torch`, `torchvision` and `pytorch3d` are not installed, run the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
67
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
    "!pip install torch torchvision\n",
68
    "import sys\n",
69
    "import torch\n",
70
71
72
73
    "if torch.__version__=='1.6.0+cu101' and sys.platform.startswith('linux'):\n",
    "    !pip install pytorch3d\n",
    "else:\n",
    "    !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
74
75
76
77
   ]
  },
  {
   "cell_type": "code",
78
   "execution_count": null,
79
80
81
82
83
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
84
85
86
87
88
89
90
91
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from skimage.io import imread\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
92
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
93
94
    "\n",
    "# Data structures and functions for rendering\n",
95
    "from pytorch3d.structures import Meshes\n",
96
97
    "from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene\n",
    "from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib\n",
facebook-github-bot's avatar
facebook-github-bot committed
98
99
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
100
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
101
102
103
104
105
106
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
107
    "    SoftPhongShader,\n",
108
109
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
110
111
    ")\n",
    "\n",
112
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
113
114
    "import sys\n",
    "import os\n",
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
130
   "execution_count": null,
131
132
133
134
135
136
137
138
139
140
141
142
143
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/master/docs/tutorials/utils/plot_image_grid.py\n",
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
144
145
146
147
148
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
149
150
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
151
152
   },
   "source": [
153
154
155
156
157
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
158
   "execution_count": null,
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
177
178
179
    "\n",
    "Load an `.obj` file and it's associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
    "\n",
180
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
181
    "\n",
182
    "**TexturesUV** is an auxillary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
186
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
187
188
189
190
191
192
193
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
194
195
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
196
197
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
198
199
  {
   "cell_type": "code",
200
   "execution_count": null,
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
220
   "execution_count": null,
221
222
223
224
225
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
226
227
228
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
229
230
231
232
233
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
234
235
236
237
238
239
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
240
    "mesh = load_objs_as_meshes([obj_filename], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
241
242
243
244
   ]
  },
  {
   "cell_type": "markdown",
245
246
247
248
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
249
250
251
252
253
254
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
255
   "execution_count": null,
256
257
258
259
260
261
262
263
264
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
265
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
266
267
   "source": [
    "plt.figure(figsize=(7,7))\n",
268
    "texture_image=mesh.textures.maps_padded()\n",
facebook-github-bot's avatar
facebook-github-bot committed
269
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
270
    "plt.grid(\"off\");\n",
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    "plt.axis(\"off\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
291
292
293
294
   ]
  },
  {
   "cell_type": "markdown",
295
296
297
298
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
299
   "source": [
300
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
301
    "\n",
302
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
303
304
305
306
307
308
    "\n",
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **phong shading**. Then we learn how to vary different components using the modular API.  "
   ]
  },
  {
   "cell_type": "code",
309
   "execution_count": null,
310
311
312
313
314
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
315
316
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
317
    "# Initialize a camera.\n",
318
319
320
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
321
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
325
326
327
328
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
329
330
331
332
333
334
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
335
336
337
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
338
339
340
341
342
343
344
345
346
    "\n",
    "# Create a phong renderer by composing a rasterizer and a shader. The textured phong shader will \n",
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
347
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
348
349
350
351
352
353
354
355
356
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
357
358
359
360
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
361
   "source": [
362
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
363
364
365
366
   ]
  },
  {
   "cell_type": "markdown",
367
368
369
370
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
371
372
373
374
375
376
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
377
   "execution_count": null,
378
379
380
381
382
383
384
385
386
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
387
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
388
389
390
391
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
392
393
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
394
395
396
397
   ]
  },
  {
   "cell_type": "markdown",
398
399
400
401
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
402
   "source": [
403
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
404
405
406
407
408
409
410
411
412
413
    "\n",
    "We can pass arbirary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
414
   "execution_count": null,
415
416
417
418
419
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
420
421
   "outputs": [],
   "source": [
422
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
423
424
425
426
427
428
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
429
   "execution_count": null,
430
431
432
433
434
435
436
437
438
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
439
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
440
441
442
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
443
444
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
445
446
447
448
   ]
  },
  {
   "cell_type": "markdown",
449
450
451
452
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
453
   "source": [
454
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
455
456
457
458
459
460
461
462
463
464
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
465
   "execution_count": null,
466
467
468
469
470
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
471
472
   "outputs": [],
   "source": [
473
474
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
475
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
476
    "\n",
477
478
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
493
   "execution_count": null,
494
495
496
497
498
499
500
501
502
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
503
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
504
505
506
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
507
508
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
509
510
511
512
   ]
  },
  {
   "cell_type": "markdown",
513
514
515
516
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
517
   "source": [
518
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
519
    "\n",
520
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
521
522
523
524
525
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
526
   "execution_count": null,
527
528
529
530
531
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
532
533
534
535
536
537
538
539
540
541
542
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
543
544
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
545
546
547
548
549
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
550
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
551
    "\n",
552
553
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
554
555
556
557
   ]
  },
  {
   "cell_type": "code",
558
   "execution_count": null,
559
560
561
562
563
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
564
565
566
567
   "outputs": [],
   "source": [
    "# We can pass arbirary keyword arguments to the rasterizer/shader via the renderer\n",
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
568
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
569
570
571
572
   ]
  },
  {
   "cell_type": "code",
573
   "execution_count": null,
574
   "metadata": {},
575
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
576
577
578
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
579
  },
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
610
611
612
613
614
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
631
632
633
634
635
636
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
    "fig.show()"
637
638
639
640
641
642
643
644
645
646
647
648
649
650
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    "# plot mesh batch in the same trace\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh_batch\": mesh_batch\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different traces\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0],\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different subplots\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0]\n",
    "    },\n",
    "    \"subplot2\":{\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
699
700
701
702
703
704
705
706
707
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
708
    "mesh_4 = mesh_batch.extend(2)\n",
709
710
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
711
    "fig = plot_batch_individually(mesh_4)\n",
712
    "# we can update the figure height and width\n",
713
    "fig.update_layout(height=1000, width=500)\n",
714
715
716
717
718
719
720
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
721
    "We can also modify the axis arguments and axis backgrounds in both functions. "
722
723
724
725
726
727
728
729
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
730
731
732
733
734
735
736
737
738
    "fig2 = plot_scene({\n",
    "    \"cow_plot1\": {\n",
    "        \"cows\": mesh_batch\n",
    "    }\n",
    "},\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
739
740
741
    "fig2.show()"
   ]
  },
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig3 = plot_batch_individually(\n",
    "    mesh_4, \n",
    "    ncols=2,\n",
    "    subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
    "fig3.show()"
   ]
  },
759
760
761
762
763
764
765
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
766
767
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
768
   ]
facebook-github-bot's avatar
facebook-github-bot committed
769
770
771
  }
 ],
 "metadata": {
772
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
773
  "anp_metadata": {
774
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
775
  },
facebook-github-bot's avatar
facebook-github-bot committed
776
777
778
779
780
781
782
783
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
784
785
786
787
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
788
789
790
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
791
  "kernelspec": {
792
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
793
   "language": "python",
794
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
795
796
797
798
799
800
801
802
803
804
805
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
806
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
807
808
809
  }
 },
 "nbformat": 4,
810
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
811
}