render_textured_meshes.ipynb 20.8 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
   "outputs": [],
   "source": [
    "# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved."
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
50
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
    "If `torch`, `torchvision` and `pytorch3d` are not installed, run the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
67
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
    "!pip install torch torchvision\n",
68
    "import sys\n",
69
    "import torch\n",
70
71
72
73
    "if torch.__version__=='1.6.0+cu101' and sys.platform.startswith('linux'):\n",
    "    !pip install pytorch3d\n",
    "else:\n",
    "    !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
74
75
76
77
   ]
  },
  {
   "cell_type": "code",
78
   "execution_count": null,
79
80
81
82
83
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
84
85
86
87
88
89
90
91
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from skimage.io import imread\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
92
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
93
94
    "\n",
    "# Data structures and functions for rendering\n",
95
    "from pytorch3d.structures import Meshes\n",
Amitav Baruah's avatar
Amitav Baruah committed
96
    "from pytorch3d.vis import AxisArgs, plot_meshes\n",
facebook-github-bot's avatar
facebook-github-bot committed
97
98
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
99
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
100
101
102
103
104
105
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
106
    "    SoftPhongShader,\n",
107
108
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
109
110
    ")\n",
    "\n",
111
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
112
113
    "import sys\n",
    "import os\n",
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
129
   "execution_count": null,
130
131
132
133
134
135
136
137
138
139
140
141
142
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/master/docs/tutorials/utils/plot_image_grid.py\n",
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
143
144
145
146
147
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
148
149
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
150
151
   },
   "source": [
152
153
154
155
156
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
157
   "execution_count": null,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
176
177
178
    "\n",
    "Load an `.obj` file and it's associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
    "\n",
179
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
180
    "\n",
181
    "**TexturesUV** is an auxillary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
182
183
184
185
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
186
187
188
189
190
191
192
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
193
194
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
195
196
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
197
198
  {
   "cell_type": "code",
199
   "execution_count": null,
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
219
   "execution_count": null,
220
221
222
223
224
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
225
226
227
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
228
229
230
231
232
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
233
234
235
236
237
238
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
239
240
    "mesh = load_objs_as_meshes([obj_filename], device=device)\n",
    "texture_image=mesh.textures.maps_padded()"
facebook-github-bot's avatar
facebook-github-bot committed
241
242
243
244
   ]
  },
  {
   "cell_type": "markdown",
245
246
247
248
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
249
250
251
252
253
254
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
255
   "execution_count": null,
256
257
258
259
260
261
262
263
264
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
265
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
266
267
268
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
269
270
    "plt.grid(\"off\");\n",
    "plt.axis('off');"
facebook-github-bot's avatar
facebook-github-bot committed
271
272
273
274
   ]
  },
  {
   "cell_type": "markdown",
275
276
277
278
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
279
   "source": [
280
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
281
    "\n",
282
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
283
284
285
286
287
288
    "\n",
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **phong shading**. Then we learn how to vary different components using the modular API.  "
   ]
  },
  {
   "cell_type": "code",
289
   "execution_count": null,
290
291
292
293
294
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
295
296
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
297
    "# Initialize a camera.\n",
298
299
300
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
301
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
302
303
304
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
305
306
307
308
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
309
310
311
312
313
314
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
315
316
317
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
318
319
320
321
322
323
324
325
326
    "\n",
    "# Create a phong renderer by composing a rasterizer and a shader. The textured phong shader will \n",
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
327
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
328
329
330
331
332
333
334
335
336
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
337
338
339
340
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
341
   "source": [
342
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
343
344
345
346
   ]
  },
  {
   "cell_type": "markdown",
347
348
349
350
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
351
352
353
354
355
356
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
357
   "execution_count": null,
358
359
360
361
362
363
364
365
366
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
367
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
368
369
370
371
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
372
373
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
374
375
376
377
   ]
  },
  {
   "cell_type": "markdown",
378
379
380
381
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
382
   "source": [
383
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
384
385
386
387
388
389
390
391
392
393
    "\n",
    "We can pass arbirary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
394
   "execution_count": null,
395
396
397
398
399
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
400
401
   "outputs": [],
   "source": [
402
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
403
404
405
406
407
408
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
409
   "execution_count": null,
410
411
412
413
414
415
416
417
418
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
419
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
420
421
422
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
423
424
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
425
426
427
428
   ]
  },
  {
   "cell_type": "markdown",
429
430
431
432
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
433
   "source": [
434
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
435
436
437
438
439
440
441
442
443
444
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
445
   "execution_count": null,
446
447
448
449
450
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
451
452
   "outputs": [],
   "source": [
453
454
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
455
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
456
    "\n",
457
458
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
473
   "execution_count": null,
474
475
476
477
478
479
480
481
482
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
483
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
484
485
486
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
487
488
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
489
490
491
492
   ]
  },
  {
   "cell_type": "markdown",
493
494
495
496
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
497
   "source": [
498
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
499
    "\n",
500
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
501
502
503
504
505
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
506
   "execution_count": null,
507
508
509
510
511
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
512
513
514
515
516
517
518
519
520
521
522
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
523
524
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
525
526
527
528
529
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
530
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
531
    "\n",
532
533
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
534
535
536
537
   ]
  },
  {
   "cell_type": "code",
538
   "execution_count": null,
539
540
541
542
543
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
544
545
546
547
   "outputs": [],
   "source": [
    "# We can pass arbirary keyword arguments to the rasterizer/shader via the renderer\n",
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
548
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
549
550
551
552
   ]
  },
  {
   "cell_type": "code",
553
   "execution_count": null,
554
   "metadata": {},
555
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
556
557
558
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
559
  },
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
    "fig = plot_meshes(mesh)\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
    "plot_meshes(mesh)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
    "plot_meshes(mesh_batch)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
    "mesh = mesh_batch.extend(2)\n",
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
    "# title the subplots\n",
    "fig = plot_meshes(mesh, in_subplots=True, ncols=2,\n",
    "           subplot_titles = [\"cow\" + str(i) for i in range(1,5)]  # this should have a title for each subplot, titles can be \"\"\n",
    "           )\n",
    "# we can update the figure height and width\n",
    "fig.update_layout(height=500, width=500)\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also modify the axis arguments and axis backgrounds."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig2 = plot_meshes(mesh_batch, xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "                        yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "                        zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "                        subplot_titles=[\"2 meshes\"],\n",
    "                        axis_args=AxisArgs(showgrid=True))\n",
    "fig2.show()"
   ]
  },
665
666
667
668
669
670
671
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
672
673
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
674
   ]
facebook-github-bot's avatar
facebook-github-bot committed
675
676
677
  }
 ],
 "metadata": {
678
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
679
  "anp_metadata": {
680
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
681
  },
facebook-github-bot's avatar
facebook-github-bot committed
682
683
684
685
686
687
688
689
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
690
691
692
693
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
694
695
696
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
697
  "kernelspec": {
698
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
699
   "language": "python",
700
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
701
702
703
704
705
706
707
708
709
710
711
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
712
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
713
714
715
  }
 },
 "nbformat": 4,
716
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
717
}