test_chamfer.py 28.1 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
8
from collections import namedtuple
9

Nikhila Ravi's avatar
Nikhila Ravi committed
10
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
11
12
import torch
import torch.nn.functional as F
Nikhila Ravi's avatar
Nikhila Ravi committed
13
from common_testing import TestCaseMixin, get_random_cuda_device
14
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
15
16
17
18
19
20
21
from pytorch3d.structures.pointclouds import Pointclouds


# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
22

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
23
24

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
25
26
27
28
29
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
30
31
32
    def init_pointclouds(
        N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
33
34
35
36
37
38
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
39
40
41
        low = 0 if allow_empty else 1
        p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
42
43
        P1 = p1_lengths.max().item()
        P2 = p2_lengths.max().item()
Nikhila Ravi's avatar
Nikhila Ravi committed
44
45
46
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
47
48
49
50
51
52
53
        p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 /= n1.norm(dim=-1, p=2, keepdim=True)
        n2 /= n2.norm(dim=-1, p=2, keepdim=True)

Nikhila Ravi's avatar
Nikhila Ravi committed
54
55
56
57
58
59
60
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
61
62
63
64
            p1_list.append(p1[i, :l1].clone())
            p2_list.append(p2[i, :l2].clone())
            n1_list.append(n1[i, :l1].clone())
            n2_list.append(n2[i, :l2].clone())
Nikhila Ravi's avatar
Nikhila Ravi committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
89
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
90
    def chamfer_distance_naive_pointclouds(p1, p2, device="cpu"):
facebook-github-bot's avatar
facebook-github-bot committed
91
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
92
93
94
95
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
96
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

Nikhila Ravi's avatar
Nikhila Ravi committed
118
119
        is_x_heterogeneous = (x_lengths != P1).any()
        is_y_heterogeneous = (y_lengths != P2).any()
Nikhila Ravi's avatar
Nikhila Ravi committed
120
121
122
123
124
125
126
127
        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
128

Nikhila Ravi's avatar
Nikhila Ravi committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
                )
            )

            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
160
161

    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
162
    def chamfer_distance_naive(x, y, x_normals=None, y_normals=None):
facebook-github-bot's avatar
facebook-github-bot committed
163
164
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
165
166
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
167
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
168
169
        N, P1, D = x.shape
        P2 = y.size(1)
Nikhila Ravi's avatar
Nikhila Ravi committed
170
        device = x.device
Nikhila Ravi's avatar
Nikhila Ravi committed
171
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
172
173
174
175
176
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
Nikhila Ravi's avatar
Nikhila Ravi committed
177
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
facebook-github-bot's avatar
facebook-github-bot committed
178
179
180
181
182

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
183
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
184
185

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
186
187
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
facebook-github-bot's avatar
facebook-github-bot committed
188
189
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
190
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
191
192
193
194
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
195
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
196
197
198
199
200
201
                )
            )
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
202
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
203
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
204
205
206
207
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
208
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
209
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
210
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(p1, p2)

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(p11, p22, weights=weights)
facebook-github-bot's avatar
facebook-github-bot committed
226
227
228
        pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss *= weights
        pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
229

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
230
        self.assertClose(loss, pred_loss)
facebook-github-bot's avatar
facebook-github-bot committed
231
232
        self.assertTrue(loss_norm is None)

Nikhila Ravi's avatar
Nikhila Ravi committed
233
234
235
236
        # Check gradients
        self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
237
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
238
239
240
241
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
242
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
243
        N, max_P1, max_P2 = 3, 70, 70
Nikhila Ravi's avatar
Nikhila Ravi committed
244
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        weights = points_normals.weights
        x_lengths = points_normals.p1_lengths
        y_lengths = points_normals.p2_lengths

        # Chamfer with tensors as input for heterogeneous pointclouds.
        cham_tensor, norm_tensor = chamfer_distance(
            points_normals.p1,
            points_normals.p2,
            x_normals=points_normals.n1,
            y_normals=points_normals.n2,
            x_lengths=points_normals.p1_lengths,
            y_lengths=points_normals.p2_lengths,
            weights=weights,
facebook-github-bot's avatar
facebook-github-bot committed
259
260
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
261
262
        # Chamfer with pointclouds as input.
        pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
Nikhila Ravi's avatar
Nikhila Ravi committed
263
            points_normals.cloud1, points_normals.cloud2, device=device
Nikhila Ravi's avatar
Nikhila Ravi committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        )

        # Mean reduction point loss.
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_mean = (
            pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
        )
        pred_loss_mean = pred_loss_mean.sum()
        pred_loss_mean /= weights.sum()

        # Mean reduction norm loss.
        pred_norm_loss[0] *= weights.view(N, 1)
        pred_norm_loss[1] *= weights.view(N, 1)
        pred_norm_loss_mean = (
            pred_norm_loss[0].sum(1) / x_lengths + pred_norm_loss[1].sum(1) / y_lengths
        )
        pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

        self.assertClose(pred_loss_mean, cham_tensor)
        self.assertClose(pred_norm_loss_mean, norm_tensor)

        self._check_gradients(
            cham_tensor,
            norm_tensor,
            pred_loss_mean,
            pred_norm_loss_mean,
            points_normals.cloud1.points_list(),
            points_normals.p1,
            points_normals.cloud2.points_list(),
            points_normals.p2,
            points_normals.cloud1.normals_list(),
            points_normals.n1,
            points_normals.cloud2.normals_list(),
            points_normals.n2,
            x_lengths,
            y_lengths,
        )

    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
306
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
307
308
309
310
311
312
313
314
315
316
317
318
319

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
320
321
322
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self.assertClose(norm_cloud, norm_tensor)
            self._check_gradients(
                cham_tensor,
                norm_tensor,
                cham_cloud,
                norm_cloud,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                points_normals.p1_lengths,
                points_normals.p2_lengths,
            )

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
366
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
367
368
369
370
371
372
373
374
375
376
377
378
379

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
380
381
382
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self._check_gradients(
                cham_tensor,
                None,
                cham_cloud,
                None,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                lengths1=points_normals.p1_lengths,
                lengths2=points_normals.p2_lengths,
            )

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
422
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
423
424
425
426
427
428
429
430
431
432
433
434
435
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
436
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
437
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
438
439
440
441
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
442
443
444
445
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
446
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
447
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
448
449
450
451
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
452
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
453
454
455
456
457

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
458
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
459

Nikhila Ravi's avatar
Nikhila Ravi committed
460
461
462
463
464
465
466
467
468
469
470
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
471
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
487
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
488
489
490
491
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
492
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
493
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
494
495
496
497
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
498
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
499
500
501

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
502
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
503

Nikhila Ravi's avatar
Nikhila Ravi committed
504
505
506
507
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
508

Nikhila Ravi's avatar
Nikhila Ravi committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
526
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
527
528
529
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
530
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
531
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
532

Nikhila Ravi's avatar
Nikhila Ravi committed
533
534
535
536
537
538
539
540
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
541

Nikhila Ravi's avatar
Nikhila Ravi committed
542
543
544
545
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
546

Nikhila Ravi's avatar
Nikhila Ravi committed
547
548
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
549

Nikhila Ravi's avatar
Nikhila Ravi committed
550
551
552
553
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
554

Nikhila Ravi's avatar
Nikhila Ravi committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
571
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
572
573
574
575
576
577
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
578
579
580
581

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
582
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
583
584
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
585
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
586
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
587
588
589
590
591
592
593
594
595
596

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
597
598

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
599
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
600
601
602
603
604
605
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
606
607
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
608
609
610
611
612
613
614
615
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
616
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
617
618
619
620
621
622
623

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
624
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
625
626
627
628
629

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
630
631
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
632
633
634
635
636
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
637
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
638
639

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
640
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
641
642
643
644
645

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
646
647
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
648
649
650
651
652
653
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
654
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
655
656
657
658
659

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
660
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
661
662
663
664
665

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
666
667
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
668
669
670
671
672
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
673
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
674
675

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
676
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
677

Nikhila Ravi's avatar
Nikhila Ravi committed
678
679
680
681
682
683
684
685
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

        # Error when point_reduction is not in ["mean", "sum"].
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, point_reduction=None)

facebook-github-bot's avatar
facebook-github-bot committed
686
687
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
Nikhila Ravi's avatar
Nikhila Ravi committed
688
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
689
690
691
692
693
694
695
696
697
698
699
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
700
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
701
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
702
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
703
704
705
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
706
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
707
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
708
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
709
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
710
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
711
712
713
714
715
716
717
718
719
720
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
721
722
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
723
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

facebook-github-bot's avatar
facebook-github-bot committed
745
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
746
    def chamfer_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
747
748
749
750
751
752
        batch_size: int,
        P1: int,
        P2: int,
        return_normals: bool,
        homogeneous: bool,
        device="cpu",
Nikhila Ravi's avatar
Nikhila Ravi committed
753
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
754
755
756
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
        l1 = points_normals.p1_lengths
        l2 = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
757
758
759
760
761
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
762
763
764
765
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
766
767
                points_normals.p1,
                points_normals.p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
768
769
                x_lengths=l1,
                y_lengths=l2,
Nikhila Ravi's avatar
Nikhila Ravi committed
770
771
772
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                weights=points_normals.weights,
facebook-github-bot's avatar
facebook-github-bot committed
773
774
775
776
777
778
779
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
780
        batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
facebook-github-bot's avatar
facebook-github-bot committed
781
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
782
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
783
784
785
786
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
787
788
789
790
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
facebook-github-bot's avatar
facebook-github-bot committed
791
792
793
794
            )
            torch.cuda.synchronize()

        return loss