test_chamfer.py 27.9 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
4
from collections import namedtuple
5

Nikhila Ravi's avatar
Nikhila Ravi committed
6
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
7
8
import torch
import torch.nn.functional as F
Nikhila Ravi's avatar
Nikhila Ravi committed
9
from common_testing import TestCaseMixin, get_random_cuda_device
10
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
11
12
13
14
15
16
17
from pytorch3d.structures.pointclouds import Pointclouds


# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
18

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
20

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
21
22
23
24
25
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
27
28
    def init_pointclouds(
        N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
29
30
31
32
33
34
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
35
36
37
        low = 0 if allow_empty else 1
        p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
38
39
40
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
42
43
44
45
46
47
        p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 /= n1.norm(dim=-1, p=2, keepdim=True)
        n2 /= n2.norm(dim=-1, p=2, keepdim=True)

Nikhila Ravi's avatar
Nikhila Ravi committed
48
49
50
51
52
53
54
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
55
56
57
58
            p1_list.append(p1[i, :l1].clone())
            p2_list.append(p2[i, :l2].clone())
            n1_list.append(n1[i, :l1].clone())
            n2_list.append(n2[i, :l2].clone())
Nikhila Ravi's avatar
Nikhila Ravi committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
83
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
84
    def chamfer_distance_naive_pointclouds(p1, p2, device="cpu"):
facebook-github-bot's avatar
facebook-github-bot committed
85
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
86
87
88
89
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
90
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

        is_x_heterogeneous = ~(x_lengths == P1).all()
        is_y_heterogeneous = ~(y_lengths == P2).all()

        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
123

Nikhila Ravi's avatar
Nikhila Ravi committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
                )
            )

            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
155
156

    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
157
    def chamfer_distance_naive(x, y, x_normals=None, y_normals=None):
facebook-github-bot's avatar
facebook-github-bot committed
158
159
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
160
161
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
162
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
163
164
        N, P1, D = x.shape
        P2 = y.size(1)
Nikhila Ravi's avatar
Nikhila Ravi committed
165
        device = x.device
Nikhila Ravi's avatar
Nikhila Ravi committed
166
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
167
168
169
170
171
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
Nikhila Ravi's avatar
Nikhila Ravi committed
172
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
facebook-github-bot's avatar
facebook-github-bot committed
173
174
175
176
177

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
178
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
179
180

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
181
182
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
facebook-github-bot's avatar
facebook-github-bot committed
183
184
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
185
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
186
187
188
189
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
190
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
191
192
193
194
195
196
                )
            )
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
197
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
198
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
199
200
201
202
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
203
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
204
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
205
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(p1, p2)

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(p11, p22, weights=weights)
facebook-github-bot's avatar
facebook-github-bot committed
221
222
223
        pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss *= weights
        pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
224

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
225
        self.assertClose(loss, pred_loss)
facebook-github-bot's avatar
facebook-github-bot committed
226
227
        self.assertTrue(loss_norm is None)

Nikhila Ravi's avatar
Nikhila Ravi committed
228
229
230
231
        # Check gradients
        self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
232
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
233
234
235
236
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
237
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
238
        N, max_P1, max_P2 = 3, 70, 70
Nikhila Ravi's avatar
Nikhila Ravi committed
239
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        weights = points_normals.weights
        x_lengths = points_normals.p1_lengths
        y_lengths = points_normals.p2_lengths

        # Chamfer with tensors as input for heterogeneous pointclouds.
        cham_tensor, norm_tensor = chamfer_distance(
            points_normals.p1,
            points_normals.p2,
            x_normals=points_normals.n1,
            y_normals=points_normals.n2,
            x_lengths=points_normals.p1_lengths,
            y_lengths=points_normals.p2_lengths,
            weights=weights,
facebook-github-bot's avatar
facebook-github-bot committed
254
255
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
256
257
        # Chamfer with pointclouds as input.
        pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
Nikhila Ravi's avatar
Nikhila Ravi committed
258
            points_normals.cloud1, points_normals.cloud2, device=device
Nikhila Ravi's avatar
Nikhila Ravi committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        )

        # Mean reduction point loss.
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_mean = (
            pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
        )
        pred_loss_mean = pred_loss_mean.sum()
        pred_loss_mean /= weights.sum()

        # Mean reduction norm loss.
        pred_norm_loss[0] *= weights.view(N, 1)
        pred_norm_loss[1] *= weights.view(N, 1)
        pred_norm_loss_mean = (
            pred_norm_loss[0].sum(1) / x_lengths + pred_norm_loss[1].sum(1) / y_lengths
        )
        pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

        self.assertClose(pred_loss_mean, cham_tensor)
        self.assertClose(pred_norm_loss_mean, norm_tensor)

        self._check_gradients(
            cham_tensor,
            norm_tensor,
            pred_loss_mean,
            pred_norm_loss_mean,
            points_normals.cloud1.points_list(),
            points_normals.p1,
            points_normals.cloud2.points_list(),
            points_normals.p2,
            points_normals.cloud1.normals_list(),
            points_normals.n1,
            points_normals.cloud2.normals_list(),
            points_normals.n2,
            x_lengths,
            y_lengths,
        )

    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
301
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
302
303
304
305
306
307
308
309
310
311
312
313
314

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
315
316
317
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self.assertClose(norm_cloud, norm_tensor)
            self._check_gradients(
                cham_tensor,
                norm_tensor,
                cham_cloud,
                norm_cloud,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                points_normals.p1_lengths,
                points_normals.p2_lengths,
            )

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
361
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
362
363
364
365
366
367
368
369
370
371
372
373
374

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
375
376
377
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self._check_gradients(
                cham_tensor,
                None,
                cham_cloud,
                None,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                lengths1=points_normals.p1_lengths,
                lengths2=points_normals.p2_lengths,
            )

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
417
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
418
419
420
421
422
423
424
425
426
427
428
429
430
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
431
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
432
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
433
434
435
436
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
437
438
439
440
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
441
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
442
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
443
444
445
446
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
447
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
448
449
450
451
452

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
453
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
454

Nikhila Ravi's avatar
Nikhila Ravi committed
455
456
457
458
459
460
461
462
463
464
465
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
466
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
482
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
483
484
485
486
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
487
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
488
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
489
490
491
492
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
493
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
494
495
496

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
497
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
498

Nikhila Ravi's avatar
Nikhila Ravi committed
499
500
501
502
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
503

Nikhila Ravi's avatar
Nikhila Ravi committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
521
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
522
523
524
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
525
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
526
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
527

Nikhila Ravi's avatar
Nikhila Ravi committed
528
529
530
531
532
533
534
535
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
536

Nikhila Ravi's avatar
Nikhila Ravi committed
537
538
539
540
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
541

Nikhila Ravi's avatar
Nikhila Ravi committed
542
543
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
544

Nikhila Ravi's avatar
Nikhila Ravi committed
545
546
547
548
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
549

Nikhila Ravi's avatar
Nikhila Ravi committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
566
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
567
568
569
570
571
572
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
573
574
575
576

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
577
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
578
579
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
580
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
581
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
582
583
584
585
586
587
588
589
590
591

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
592
593

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
594
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
595
596
597
598
599
600
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
601
602
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
603
604
605
606
607
608
609
610
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
611
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
612
613
614
615
616
617
618

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
619
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
620
621
622
623
624

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
625
626
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
627
628
629
630
631
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
632
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
633
634

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
635
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
636
637
638
639
640

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
641
642
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
643
644
645
646
647
648
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
649
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
650
651
652
653
654

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
655
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
656
657
658
659
660

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
661
662
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
663
664
665
666
667
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
668
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
669
670

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
671
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
672

Nikhila Ravi's avatar
Nikhila Ravi committed
673
674
675
676
677
678
679
680
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

        # Error when point_reduction is not in ["mean", "sum"].
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, point_reduction=None)

facebook-github-bot's avatar
facebook-github-bot committed
681
682
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
Nikhila Ravi's avatar
Nikhila Ravi committed
683
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
684
685
686
687
688
689
690
691
692
693
694
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
695
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
696
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
697
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
698
699
700
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
701
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
702
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
703
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
704
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
705
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
706
707
708
709
710
711
712
713
714
715
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
716
717
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
718
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

facebook-github-bot's avatar
facebook-github-bot committed
740
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
741
    def chamfer_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
742
743
744
745
746
747
        batch_size: int,
        P1: int,
        P2: int,
        return_normals: bool,
        homogeneous: bool,
        device="cpu",
Nikhila Ravi's avatar
Nikhila Ravi committed
748
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
749
750
751
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
        l1 = points_normals.p1_lengths
        l2 = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
752
753
754
755
756
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
757
758
759
760
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
761
762
                points_normals.p1,
                points_normals.p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
763
764
                x_lengths=l1,
                y_lengths=l2,
Nikhila Ravi's avatar
Nikhila Ravi committed
765
766
767
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                weights=points_normals.weights,
facebook-github-bot's avatar
facebook-github-bot committed
768
769
770
771
772
773
774
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
775
        batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
facebook-github-bot's avatar
facebook-github-bot committed
776
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
777
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
778
779
780
781
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
782
783
784
785
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
facebook-github-bot's avatar
facebook-github-bot committed
786
787
788
789
            )
            torch.cuda.synchronize()

        return loss