test_chamfer.py 27.6 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
4
from collections import namedtuple
5

Nikhila Ravi's avatar
Nikhila Ravi committed
6
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
7
8
import torch
import torch.nn.functional as F
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
from common_testing import TestCaseMixin
10
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
11
12
13
14
15
16
17
18
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.structures.utils import list_to_padded


# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
19

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
20
21

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_pointclouds(N, P1, P2, device, requires_grad: bool = True):
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
        p1_lengths = torch.randint(P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(P2, size=(N,), dtype=torch.int64, device=device)
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
            p1_list.append(torch.rand((l1, 3), dtype=torch.float32, device=device))
            p2_list.append(torch.rand((l2, 3), dtype=torch.float32, device=device))
            n1_list.append(torch.rand((l1, 3), dtype=torch.float32, device=device))
            n2_list.append(torch.rand((l2, 3), dtype=torch.float32, device=device))

        n1_list = [n / n.norm(dim=-1, p=2, keepdim=True) for n in n1_list]
        n2_list = [n / n.norm(dim=-1, p=2, keepdim=True) for n in n2_list]

        # Clone the lists and initialize padded tensors.
        p1 = list_to_padded([p.clone() for p in p1_list])
        p2 = list_to_padded([p.clone() for p in p2_list])
        n1 = list_to_padded([p.clone() for p in n1_list])
        n2 = list_to_padded([p.clone() for p in n2_list])

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
83
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
84
    def chamfer_distance_naive_pointclouds(p1, p2):
facebook-github-bot's avatar
facebook-github-bot committed
85
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
86
87
88
89
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
90
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
91
92
93
94
95
96
97
98
99
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

facebook-github-bot's avatar
facebook-github-bot committed
100
        device = torch.device("cuda:0")
Nikhila Ravi's avatar
Nikhila Ravi committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

        is_x_heterogeneous = ~(x_lengths == P1).all()
        is_y_heterogeneous = ~(y_lengths == P2).all()

        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
124

Nikhila Ravi's avatar
Nikhila Ravi committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
                )
            )

            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
156
157

    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
158
    def chamfer_distance_naive(x, y, x_normals=None, y_normals=None):
facebook-github-bot's avatar
facebook-github-bot committed
159
160
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
161
162
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
163
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
164
165
        N, P1, D = x.shape
        P2 = y.size(1)
facebook-github-bot's avatar
facebook-github-bot committed
166
        device = torch.device("cuda:0")
Nikhila Ravi's avatar
Nikhila Ravi committed
167
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
168
169
170
171
172
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
Nikhila Ravi's avatar
Nikhila Ravi committed
173
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
facebook-github-bot's avatar
facebook-github-bot committed
174
175
176
177
178

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
179
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
180
181

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
182
183
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
facebook-github-bot's avatar
facebook-github-bot committed
184
185
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
186
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
191
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
192
193
194
195
196
197
                )
            )
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
198
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
199
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
200
201
202
203
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
204
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        N, max_P1, max_P2 = 7, 10, 18
        device = "cuda:0"
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(p1, p2)

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(p11, p22, weights=weights)
facebook-github-bot's avatar
facebook-github-bot committed
222
223
224
        pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss *= weights
        pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
225

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
226
        self.assertClose(loss, pred_loss)
facebook-github-bot's avatar
facebook-github-bot committed
227
228
        self.assertTrue(loss_norm is None)

Nikhila Ravi's avatar
Nikhila Ravi committed
229
230
231
232
        # Check gradients
        self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
233
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
234
235
236
237
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
238
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        N, max_P1, max_P2 = 3, 70, 70
        device = "cuda:0"
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        weights = points_normals.weights
        x_lengths = points_normals.p1_lengths
        y_lengths = points_normals.p2_lengths

        # Chamfer with tensors as input for heterogeneous pointclouds.
        cham_tensor, norm_tensor = chamfer_distance(
            points_normals.p1,
            points_normals.p2,
            x_normals=points_normals.n1,
            y_normals=points_normals.n2,
            x_lengths=points_normals.p1_lengths,
            y_lengths=points_normals.p2_lengths,
            weights=weights,
facebook-github-bot's avatar
facebook-github-bot committed
255
256
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        # Chamfer with pointclouds as input.
        pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
            points_normals.cloud1, points_normals.cloud2
        )

        # Mean reduction point loss.
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_mean = (
            pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
        )
        pred_loss_mean = pred_loss_mean.sum()
        pred_loss_mean /= weights.sum()

        # Mean reduction norm loss.
        pred_norm_loss[0] *= weights.view(N, 1)
        pred_norm_loss[1] *= weights.view(N, 1)
        pred_norm_loss_mean = (
            pred_norm_loss[0].sum(1) / x_lengths + pred_norm_loss[1].sum(1) / y_lengths
        )
        pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

        self.assertClose(pred_loss_mean, cham_tensor)
        self.assertClose(pred_norm_loss_mean, norm_tensor)

        self._check_gradients(
            cham_tensor,
            norm_tensor,
            pred_loss_mean,
            pred_norm_loss_mean,
            points_normals.cloud1.points_list(),
            points_normals.p1,
            points_normals.cloud2.points_list(),
            points_normals.p2,
            points_normals.cloud1.normals_list(),
            points_normals.n1,
            points_normals.cloud2.normals_list(),
            points_normals.n2,
            x_lengths,
            y_lengths,
        )

    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
        device = "cuda:0"

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
            points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self.assertClose(norm_cloud, norm_tensor)
            self._check_gradients(
                cham_tensor,
                norm_tensor,
                cham_cloud,
                norm_cloud,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                points_normals.p1_lengths,
                points_normals.p2_lengths,
            )

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
        device = "cuda:0"

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
            points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self._check_gradients(
                cham_tensor,
                None,
                cham_cloud,
                None,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                lengths1=points_normals.p1_lengths,
                lengths2=points_normals.p2_lengths,
            )

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
        device = "cuda:0"
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
428
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
429
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
430
431
432
433
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
434
435
436
437
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
438
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
439
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
440
441
442
443
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
444
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
445
446
447
448
449

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
450
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
451

Nikhila Ravi's avatar
Nikhila Ravi committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
        device = "cuda:0"
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
479
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
480
481
482
483
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
484
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
485
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
486
487
488
489
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
490
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
491
492
493

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
494
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
495

Nikhila Ravi's avatar
Nikhila Ravi committed
496
497
498
499
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
500

Nikhila Ravi's avatar
Nikhila Ravi committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
518
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
519
520
521
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
522
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
523
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
524

Nikhila Ravi's avatar
Nikhila Ravi committed
525
526
527
528
529
530
531
532
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
533

Nikhila Ravi's avatar
Nikhila Ravi committed
534
535
536
537
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
538

Nikhila Ravi's avatar
Nikhila Ravi committed
539
540
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
541

Nikhila Ravi's avatar
Nikhila Ravi committed
542
543
544
545
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
546

Nikhila Ravi's avatar
Nikhila Ravi committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]])
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
570
571
572
573

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
574
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
575
576
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
577
578
579
580
581
582
583
584
585
586
587
588
        N, max_P1, max_P2 = 7, 10, 18
        device = "cuda:0"

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
589
590

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
591
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
592
593
594
595
596
597
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
598
599
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
600
601
602
603
604
605
606
607
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
608
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
609
610
611
612
613
614
615

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
616
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
617
618
619
620
621

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
622
623
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
624
625
626
627
628
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
629
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
630
631

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
632
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
633
634
635
636
637

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
638
639
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
640
641
642
643
644
645
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
646
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
647
648
649
650
651

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
652
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
653
654
655
656
657

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
658
659
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
660
661
662
663
664
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
665
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
666
667

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
668
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
669

Nikhila Ravi's avatar
Nikhila Ravi committed
670
671
672
673
674
675
676
677
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

        # Error when point_reduction is not in ["mean", "sum"].
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, point_reduction=None)

facebook-github-bot's avatar
facebook-github-bot committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
        device = torch.device("cuda:0")
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
692
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
693
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
694
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
695
696
697
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
698
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
699
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
700
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
701
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
702
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
703
704
705
706
707
708
709
710
711
712
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
        device = "cuda:0"
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

facebook-github-bot's avatar
facebook-github-bot committed
737
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
738
739
740
741
    def chamfer_with_init(
        batch_size: int, P1: int, P2: int, return_normals: bool, homogeneous: bool
    ):
        p1, p2, p1_normals, p2_normals, weights, l1, l2 = TestChamfer.init_pointclouds(
facebook-github-bot's avatar
facebook-github-bot committed
742
743
            batch_size, P1, P2
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
744
745
746
747
748
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
749
750
751
752
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
753
754
755
756
757
758
759
                p1,
                p2,
                x_lengths=l1,
                y_lengths=l2,
                x_normals=p1_normals,
                y_normals=p2_normals,
                weights=weights,
facebook-github-bot's avatar
facebook-github-bot committed
760
761
762
763
764
765
766
767
768
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
        batch_size: int, P1: int, P2: int, return_normals: bool
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
769
        p1, p2, p1_normals, p2_normals, weights, _, _ = TestChamfer.init_pointclouds(
facebook-github-bot's avatar
facebook-github-bot committed
770
771
772
773
774
775
            batch_size, P1, P2
        )
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
776
                p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
777
778
779
780
            )
            torch.cuda.synchronize()

        return loss