render_textured_meshes.ipynb 23.9 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
   "outputs": [],
   "source": [
13
    "# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
facebook-github-bot's avatar
facebook-github-bot committed
14
15
16
17
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
50
    "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
67
    "import os\n",
68
    "import sys\n",
69
    "import torch\n",
70
71
72
73
74
75
    "need_pytorch3d=False\n",
    "try:\n",
    "    import pytorch3d\n",
    "except ModuleNotFoundError:\n",
    "    need_pytorch3d=True\n",
    "if need_pytorch3d:\n",
76
    "    if torch.__version__.startswith(\"1.12.\") and sys.platform.startswith(\"linux\"):\n",
77
    "        # We try to install PyTorch3D via a released wheel.\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
78
    "        pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
79
80
81
    "        version_str=\"\".join([\n",
    "            f\"py3{sys.version_info.minor}_cu\",\n",
    "            torch.version.cuda.replace(\".\",\"\"),\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
82
    "            f\"_pyt{pyt_version_str}\"\n",
83
    "        ])\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
84
85
    "        !pip install fvcore iopath\n",
    "        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
86
87
    "    else:\n",
    "        # We try to install PyTorch3D from source.\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
88
    "        !curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz\n",
89
90
91
    "        !tar xzf 1.10.0.tar.gz\n",
    "        os.environ[\"CUB_HOME\"] = os.getcwd() + \"/cub-1.10.0\"\n",
    "        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
92
93
94
95
   ]
  },
  {
   "cell_type": "code",
96
   "execution_count": null,
97
98
99
100
101
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
102
103
104
105
106
107
108
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
109
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
110
111
    "\n",
    "# Data structures and functions for rendering\n",
112
    "from pytorch3d.structures import Meshes\n",
113
114
    "from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene\n",
    "from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib\n",
facebook-github-bot's avatar
facebook-github-bot committed
115
116
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
117
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
118
119
120
121
122
123
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
124
    "    SoftPhongShader,\n",
125
126
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
127
128
    ")\n",
    "\n",
129
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
130
131
    "import sys\n",
    "import os\n",
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
147
   "execution_count": null,
148
149
150
151
152
153
154
155
156
157
158
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
159
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/main/docs/tutorials/utils/plot_image_grid.py\n",
160
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
161
162
163
164
165
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
166
167
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
168
169
   },
   "source": [
170
171
172
173
174
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
175
   "execution_count": null,
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
194
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
195
    "Load an `.obj` file and its associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
facebook-github-bot's avatar
facebook-github-bot committed
196
    "\n",
197
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
198
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
199
    "**TexturesUV** is an auxiliary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
200
201
202
203
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
204
205
206
207
208
209
210
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
211
212
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
213
214
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
215
216
  {
   "cell_type": "code",
217
   "execution_count": null,
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
237
   "execution_count": null,
238
239
240
241
242
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
243
244
245
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
246
247
248
249
250
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
251
252
253
254
255
256
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
257
    "mesh = load_objs_as_meshes([obj_filename], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
258
259
260
261
   ]
  },
  {
   "cell_type": "markdown",
262
263
264
265
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
266
267
268
269
270
271
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
272
   "execution_count": null,
273
274
275
276
277
278
279
280
281
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
282
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
283
284
   "source": [
    "plt.figure(figsize=(7,7))\n",
285
    "texture_image=mesh.textures.maps_padded()\n",
facebook-github-bot's avatar
facebook-github-bot committed
286
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    "plt.axis(\"off\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
306
307
308
309
   ]
  },
  {
   "cell_type": "markdown",
310
311
312
313
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
314
   "source": [
315
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
316
    "\n",
317
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
318
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
319
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **Phong shading**. Then we learn how to vary different components using the modular API.  "
facebook-github-bot's avatar
facebook-github-bot committed
320
321
322
323
   ]
  },
  {
   "cell_type": "code",
324
   "execution_count": null,
325
326
327
328
329
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
330
331
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
332
    "# Initialize a camera.\n",
333
334
335
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
336
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
337
338
339
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
340
341
342
343
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
344
345
346
347
348
349
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
350
351
352
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
353
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
354
    "# Create a Phong renderer by composing a rasterizer and a shader. The textured Phong shader will \n",
facebook-github-bot's avatar
facebook-github-bot committed
355
356
357
358
359
360
361
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
362
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
363
364
365
366
367
368
369
370
371
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
372
373
374
375
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
376
   "source": [
377
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
378
379
380
381
   ]
  },
  {
   "cell_type": "markdown",
382
383
384
385
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
386
387
388
389
390
391
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
392
   "execution_count": null,
393
394
395
396
397
398
399
400
401
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
402
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
403
404
405
406
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
407
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
408
409
410
411
   ]
  },
  {
   "cell_type": "markdown",
412
413
414
415
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
416
   "source": [
417
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
418
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
419
    "We can pass arbitrary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
facebook-github-bot's avatar
facebook-github-bot committed
420
421
422
423
424
425
426
427
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
428
   "execution_count": null,
429
430
431
432
433
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
434
435
   "outputs": [],
   "source": [
436
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
437
438
439
440
441
442
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
443
   "execution_count": null,
444
445
446
447
448
449
450
451
452
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
453
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
454
455
456
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
457
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
458
459
460
461
   ]
  },
  {
   "cell_type": "markdown",
462
463
464
465
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
466
   "source": [
467
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
468
469
470
471
472
473
474
475
476
477
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
478
   "execution_count": null,
479
480
481
482
483
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
484
485
   "outputs": [],
   "source": [
486
487
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
488
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
489
    "\n",
490
491
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
506
   "execution_count": null,
507
508
509
510
511
512
513
514
515
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
516
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
517
518
519
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
520
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
521
522
523
524
   ]
  },
  {
   "cell_type": "markdown",
525
526
527
528
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
529
   "source": [
530
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
531
    "\n",
532
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
533
534
535
536
537
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
538
   "execution_count": null,
539
540
541
542
543
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
544
545
546
547
548
549
550
551
552
553
554
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
555
556
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
557
558
559
560
561
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
562
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
563
    "\n",
564
565
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
566
567
568
569
   ]
  },
  {
   "cell_type": "code",
570
   "execution_count": null,
571
572
573
574
575
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
576
577
   "outputs": [],
   "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
578
    "# We can pass arbitrary keyword arguments to the rasterizer/shader via the renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
579
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
580
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
581
582
583
584
   ]
  },
  {
   "cell_type": "code",
585
   "execution_count": null,
586
   "metadata": {},
587
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
588
589
590
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
591
  },
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
622
623
624
625
626
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
643
644
645
646
647
648
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
    "fig.show()"
649
650
651
652
653
654
655
656
657
658
659
660
661
662
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    "# plot mesh batch in the same trace\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh_batch\": mesh_batch\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different traces\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0],\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different subplots\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0]\n",
    "    },\n",
    "    \"subplot2\":{\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
711
712
713
714
715
716
717
718
719
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
720
    "mesh_4 = mesh_batch.extend(2)\n",
721
722
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
723
    "fig = plot_batch_individually(mesh_4)\n",
724
    "# we can update the figure height and width\n",
725
    "fig.update_layout(height=1000, width=500)\n",
726
727
728
729
730
731
732
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
733
    "We can also modify the axis arguments and axis backgrounds in both functions. "
734
735
736
737
738
739
740
741
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
742
743
744
745
746
747
748
749
750
    "fig2 = plot_scene({\n",
    "    \"cow_plot1\": {\n",
    "        \"cows\": mesh_batch\n",
    "    }\n",
    "},\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
751
752
753
    "fig2.show()"
   ]
  },
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig3 = plot_batch_individually(\n",
    "    mesh_4, \n",
    "    ncols=2,\n",
    "    subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
    "fig3.show()"
   ]
  },
771
772
773
774
775
776
777
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
778
779
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
780
   ]
facebook-github-bot's avatar
facebook-github-bot committed
781
782
783
  }
 ],
 "metadata": {
784
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
785
  "anp_metadata": {
786
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
787
  },
facebook-github-bot's avatar
facebook-github-bot committed
788
789
790
791
792
793
794
795
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
796
797
798
799
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
800
801
802
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
803
  "kernelspec": {
804
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
805
   "language": "python",
806
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
807
808
809
810
811
812
813
814
815
816
817
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
818
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
819
820
821
  }
 },
 "nbformat": 4,
822
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
823
}