render_textured_meshes.ipynb 23.7 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
   "outputs": [],
   "source": [
13
    "# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
facebook-github-bot's avatar
facebook-github-bot committed
14
15
16
17
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
50
    "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
67
    "import os\n",
68
    "import sys\n",
69
    "import torch\n",
70
71
72
73
74
75
    "need_pytorch3d=False\n",
    "try:\n",
    "    import pytorch3d\n",
    "except ModuleNotFoundError:\n",
    "    need_pytorch3d=True\n",
    "if need_pytorch3d:\n",
76
    "    if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
77
    "        # We try to install PyTorch3D via a released wheel.\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
78
    "        pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
79
80
81
    "        version_str=\"\".join([\n",
    "            f\"py3{sys.version_info.minor}_cu\",\n",
    "            torch.version.cuda.replace(\".\",\"\"),\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
82
    "            f\"_pyt{pyt_version_str}\"\n",
83
    "        ])\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
84
85
    "        !pip install fvcore iopath\n",
    "        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
86
87
    "    else:\n",
    "        # We try to install PyTorch3D from source.\n",
88
    "        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
89
90
91
92
   ]
  },
  {
   "cell_type": "code",
93
   "execution_count": null,
94
95
96
97
98
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
99
100
101
102
103
104
105
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
106
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
107
108
    "\n",
    "# Data structures and functions for rendering\n",
109
    "from pytorch3d.structures import Meshes\n",
110
111
    "from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene\n",
    "from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib\n",
facebook-github-bot's avatar
facebook-github-bot committed
112
113
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
114
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
115
116
117
118
119
120
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
121
    "    SoftPhongShader,\n",
122
123
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
124
125
    ")\n",
    "\n",
126
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
127
128
    "import sys\n",
    "import os\n",
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
144
   "execution_count": null,
145
146
147
148
149
150
151
152
153
154
155
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
156
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/main/docs/tutorials/utils/plot_image_grid.py\n",
157
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
158
159
160
161
162
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
163
164
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
165
166
   },
   "source": [
167
168
169
170
171
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
172
   "execution_count": null,
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
191
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
192
    "Load an `.obj` file and its associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
facebook-github-bot's avatar
facebook-github-bot committed
193
    "\n",
194
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
195
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
196
    "**TexturesUV** is an auxiliary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
197
198
199
200
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
201
202
203
204
205
206
207
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
208
209
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
210
211
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
212
213
  {
   "cell_type": "code",
214
   "execution_count": null,
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
234
   "execution_count": null,
235
236
237
238
239
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
240
241
242
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
243
244
245
246
247
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
248
249
250
251
252
253
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
254
    "mesh = load_objs_as_meshes([obj_filename], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
255
256
257
258
   ]
  },
  {
   "cell_type": "markdown",
259
260
261
262
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
263
264
265
266
267
268
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
269
   "execution_count": null,
270
271
272
273
274
275
276
277
278
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
279
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
280
281
   "source": [
    "plt.figure(figsize=(7,7))\n",
282
    "texture_image=mesh.textures.maps_padded()\n",
facebook-github-bot's avatar
facebook-github-bot committed
283
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    "plt.axis(\"off\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
303
304
305
306
   ]
  },
  {
   "cell_type": "markdown",
307
308
309
310
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
311
   "source": [
312
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
313
    "\n",
314
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
315
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
316
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **Phong shading**. Then we learn how to vary different components using the modular API.  "
facebook-github-bot's avatar
facebook-github-bot committed
317
318
319
320
   ]
  },
  {
   "cell_type": "code",
321
   "execution_count": null,
322
323
324
325
326
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
327
328
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
329
    "# Initialize a camera.\n",
330
331
332
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
333
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
334
335
336
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
337
338
339
340
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
341
342
343
344
345
346
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
347
348
349
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
350
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
351
    "# Create a Phong renderer by composing a rasterizer and a shader. The textured Phong shader will \n",
facebook-github-bot's avatar
facebook-github-bot committed
352
353
354
355
356
357
358
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
359
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
360
361
362
363
364
365
366
367
368
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
369
370
371
372
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
373
   "source": [
374
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
375
376
377
378
   ]
  },
  {
   "cell_type": "markdown",
379
380
381
382
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
383
384
385
386
387
388
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
389
   "execution_count": null,
390
391
392
393
394
395
396
397
398
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
399
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
400
401
402
403
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
404
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
405
406
407
408
   ]
  },
  {
   "cell_type": "markdown",
409
410
411
412
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
413
   "source": [
414
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
415
    "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
416
    "We can pass arbitrary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
facebook-github-bot's avatar
facebook-github-bot committed
417
418
419
420
421
422
423
424
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
425
   "execution_count": null,
426
427
428
429
430
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
431
432
   "outputs": [],
   "source": [
433
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
434
435
436
437
438
439
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
440
   "execution_count": null,
441
442
443
444
445
446
447
448
449
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
450
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
451
452
453
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
454
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
455
456
457
458
   ]
  },
  {
   "cell_type": "markdown",
459
460
461
462
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
463
   "source": [
464
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
465
466
467
468
469
470
471
472
473
474
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
475
   "execution_count": null,
476
477
478
479
480
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
481
482
   "outputs": [],
   "source": [
483
484
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
485
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
486
    "\n",
487
488
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
503
   "execution_count": null,
504
505
506
507
508
509
510
511
512
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
513
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
514
515
516
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
517
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
518
519
520
521
   ]
  },
  {
   "cell_type": "markdown",
522
523
524
525
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
526
   "source": [
527
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
528
    "\n",
529
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
530
531
532
533
534
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
535
   "execution_count": null,
536
537
538
539
540
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
541
542
543
544
545
546
547
548
549
550
551
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
552
553
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
554
555
556
557
558
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
559
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
560
    "\n",
561
562
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
563
564
565
566
   ]
  },
  {
   "cell_type": "code",
567
   "execution_count": null,
568
569
570
571
572
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
573
574
   "outputs": [],
   "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
575
    "# We can pass arbitrary keyword arguments to the rasterizer/shader via the renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
576
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
577
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
578
579
580
581
   ]
  },
  {
   "cell_type": "code",
582
   "execution_count": null,
583
   "metadata": {},
584
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
585
586
587
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
588
  },
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
619
620
621
622
623
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
640
641
642
643
644
645
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
    "fig.show()"
646
647
648
649
650
651
652
653
654
655
656
657
658
659
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    "# plot mesh batch in the same trace\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh_batch\": mesh_batch\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different traces\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0],\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different subplots\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0]\n",
    "    },\n",
    "    \"subplot2\":{\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
708
709
710
711
712
713
714
715
716
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
717
    "mesh_4 = mesh_batch.extend(2)\n",
718
719
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
720
    "fig = plot_batch_individually(mesh_4)\n",
721
    "# we can update the figure height and width\n",
722
    "fig.update_layout(height=1000, width=500)\n",
723
724
725
726
727
728
729
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
730
    "We can also modify the axis arguments and axis backgrounds in both functions. "
731
732
733
734
735
736
737
738
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
739
740
741
742
743
744
745
746
747
    "fig2 = plot_scene({\n",
    "    \"cow_plot1\": {\n",
    "        \"cows\": mesh_batch\n",
    "    }\n",
    "},\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
748
749
750
    "fig2.show()"
   ]
  },
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig3 = plot_batch_individually(\n",
    "    mesh_4, \n",
    "    ncols=2,\n",
    "    subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
    "fig3.show()"
   ]
  },
768
769
770
771
772
773
774
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
775
776
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
777
   ]
facebook-github-bot's avatar
facebook-github-bot committed
778
779
780
  }
 ],
 "metadata": {
781
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
782
  "anp_metadata": {
783
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
784
  },
facebook-github-bot's avatar
facebook-github-bot committed
785
786
787
788
789
790
791
792
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
793
794
795
796
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
797
798
799
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
800
  "kernelspec": {
801
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
802
   "language": "python",
803
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
804
805
806
807
808
809
810
811
812
813
814
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
815
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
816
817
818
  }
 },
 "nbformat": 4,
819
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
820
}