test_chamfer.py 36.7 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
8
from collections import namedtuple
9

Nikhila Ravi's avatar
Nikhila Ravi committed
10
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
11
12
import torch
import torch.nn.functional as F
13
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
14
15
from pytorch3d.structures.pointclouds import Pointclouds

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
17
from .common_testing import get_random_cuda_device, TestCaseMixin

Nikhila Ravi's avatar
Nikhila Ravi committed
18
19
20
21
22

# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
23

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
24
25

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
26
27
28
29
30
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
31
32
33
    def init_pointclouds(
        N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
34
35
36
37
38
39
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
40
41
42
        low = 0 if allow_empty else 1
        p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
43
44
        P1 = p1_lengths.max().item()
        P2 = p2_lengths.max().item()
Nikhila Ravi's avatar
Nikhila Ravi committed
45
46
47
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
48
49
50
51
52
53
54
        p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 /= n1.norm(dim=-1, p=2, keepdim=True)
        n2 /= n2.norm(dim=-1, p=2, keepdim=True)

Nikhila Ravi's avatar
Nikhila Ravi committed
55
56
57
58
59
60
61
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
62
63
64
65
            p1_list.append(p1[i, :l1].clone())
            p2_list.append(p2[i, :l2].clone())
            n1_list.append(n1[i, :l1].clone())
            n2_list.append(n2[i, :l2].clone())
Nikhila Ravi's avatar
Nikhila Ravi committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
90
    @staticmethod
91
92
93
    def chamfer_distance_naive_pointclouds(
        p1, p2, norm: int = 2, device="cpu", abs_cosine=True
    ):
facebook-github-bot's avatar
facebook-github-bot committed
94
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
95
96
97
98
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
99
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

Nikhila Ravi's avatar
Nikhila Ravi committed
121
122
        is_x_heterogeneous = (x_lengths != P1).any()
        is_y_heterogeneous = (y_lengths != P2).any()
Nikhila Ravi's avatar
Nikhila Ravi committed
123
124
125
126
        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
127
128
129
130
131
132
133
134
                    if norm == 2:
                        dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
                    elif norm == 1:
                        dist[n, i1, i2] = torch.sum(
                            torch.abs(x[n, i1, :] - y[n, i2, :])
                        )
                    else:
                        raise ValueError("No support for norm %d" % (norm))
Nikhila Ravi's avatar
Nikhila Ravi committed
135
136
137

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
138

Nikhila Ravi's avatar
Nikhila Ravi committed
139
140
141
142
143
144
145
146
147
148
149
150
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
151
152
            cosine_sim1 = F.cosine_similarity(
                x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
Nikhila Ravi's avatar
Nikhila Ravi committed
153
            )
154
155
            cosine_sim2 = F.cosine_similarity(
                y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
Nikhila Ravi's avatar
Nikhila Ravi committed
156
157
            )

158
159
160
161
162
163
164
            if abs_cosine:
                lnorm1 = 1 - torch.abs(cosine_sim1)
                lnorm2 = 1 - torch.abs(cosine_sim2)
            else:
                lnorm1 = 1 - cosine_sim1
                lnorm2 = 1 - cosine_sim2

Nikhila Ravi's avatar
Nikhila Ravi committed
165
166
167
168
169
170
171
172
            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
173
174

    @staticmethod
175
176
177
    def chamfer_distance_naive(
        x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True
    ):
facebook-github-bot's avatar
facebook-github-bot committed
178
179
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
180
181
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
182
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
183
184
        N, P1, D = x.shape
        P2 = y.size(1)
Nikhila Ravi's avatar
Nikhila Ravi committed
185
        device = x.device
Nikhila Ravi's avatar
Nikhila Ravi committed
186
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
192
193
194
195
196
197
198
199
                    if norm == 2:
                        dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
                    elif norm == 1:
                        dist[n, i1, i2] = torch.sum(
                            torch.abs(x[n, i1, :] - y[n, i2, :])
                        )
                    else:
                        raise ValueError("No support for norm %d" % (norm))
facebook-github-bot's avatar
facebook-github-bot committed
200
201
202
203
204

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
205
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
206
207

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
208
209
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
210
211
212

            cosine_sim1 = F.cosine_similarity(
                x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
213
            )
214
215
            cosine_sim2 = F.cosine_similarity(
                y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
216
            )
217
218
219
220
221
222
223
224

            if abs_cosine:
                lnorm1 = 1 - torch.abs(cosine_sim1)
                lnorm2 = 1 - torch.abs(cosine_sim2)
            else:
                lnorm1 = 1 - cosine_sim1
                lnorm2 = 1 - cosine_sim2

facebook-github-bot's avatar
facebook-github-bot committed
225
226
227
228
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
229
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
230
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
231
232
233
234
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
235
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
236
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
237
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        for norm in [1, 2]:
            points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
            p1 = points_normals.p1
            p2 = points_normals.p2
            weights = points_normals.weights
            p11 = p1.detach().clone()
            p22 = p2.detach().clone()
            p11.requires_grad = True
            p22.requires_grad = True
            P1 = p1.shape[1]
            P2 = p2.shape[1]

            pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
                p1, p2, norm=norm
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
254

255
256
257
258
259
            # point_reduction = "mean".
            loss, loss_norm = chamfer_distance(p11, p22, weights=weights, norm=norm)
            pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
            pred_loss *= weights
            pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
260

261
262
            self.assertClose(loss, pred_loss)
            self.assertTrue(loss_norm is None)
facebook-github-bot's avatar
facebook-github-bot committed
263

264
265
            # Check gradients
            self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)
Nikhila Ravi's avatar
Nikhila Ravi committed
266
267

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
268
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
269
270
271
272
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
273
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
274
        N, max_P1, max_P2 = 3, 70, 70
Nikhila Ravi's avatar
Nikhila Ravi committed
275
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
276

277
278
279
280
281
        for norm in [1, 2]:
            points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
            weights = points_normals.weights
            x_lengths = points_normals.p1_lengths
            y_lengths = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
282

283
284
285
286
287
288
289
290
291
292
293
            # Chamfer with tensors as input for heterogeneous pointclouds.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                weights=weights,
                norm=norm,
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
294

295
296
297
298
            # Chamfer with pointclouds as input.
            pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
                points_normals.cloud1, points_normals.cloud2, norm=norm, device=device
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            # Mean reduction point loss.
            pred_loss[0] *= weights.view(N, 1)
            pred_loss[1] *= weights.view(N, 1)
            pred_loss_mean = (
                pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
            )
            pred_loss_mean = pred_loss_mean.sum()
            pred_loss_mean /= weights.sum()

            # Mean reduction norm loss.
            pred_norm_loss[0] *= weights.view(N, 1)
            pred_norm_loss[1] *= weights.view(N, 1)
            pred_norm_loss_mean = (
                pred_norm_loss[0].sum(1) / x_lengths
                + pred_norm_loss[1].sum(1) / y_lengths
            )
            pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            self.assertClose(pred_loss_mean, cham_tensor)
            self.assertClose(pred_norm_loss_mean, norm_tensor)

            self._check_gradients(
                cham_tensor,
                norm_tensor,
                pred_loss_mean,
                pred_norm_loss_mean,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                x_lengths,
                y_lengths,
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_single_directional_chamfer_vs_naive_pointcloud(self):
        """
        Test the single directional settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
        """
        N, max_P1, max_P2 = 3, 70, 70
        device = get_random_cuda_device()

        for norm in [1, 2]:
            for abs_cosine in [True, False]:
                points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
                weights = points_normals.weights
                x_lengths = points_normals.p1_lengths
                y_lengths = points_normals.p2_lengths

                # Chamfer with tensors as input for heterogeneous pointclouds.
                cham_tensor, norm_tensor = chamfer_distance(
                    points_normals.p1,
                    points_normals.p2,
                    x_normals=points_normals.n1,
                    y_normals=points_normals.n2,
                    x_lengths=points_normals.p1_lengths,
                    y_lengths=points_normals.p2_lengths,
                    weights=weights,
                    norm=norm,
                    single_directional=True,
                    abs_cosine=abs_cosine,
                )

                # Chamfer with pointclouds as input.
                (
                    pred_loss,
                    pred_norm_loss,
                ) = TestChamfer.chamfer_distance_naive_pointclouds(
                    points_normals.cloud1,
                    points_normals.cloud2,
                    norm=norm,
                    device=device,
                    abs_cosine=abs_cosine,
                )

                # Mean reduction point loss.
                pred_loss[0] *= weights.view(N, 1)
                pred_loss_mean = pred_loss[0].sum(1) / x_lengths
                pred_loss_mean = pred_loss_mean.sum()
                pred_loss_mean /= weights.sum()

                # Mean reduction norm loss.
                pred_norm_loss[0] *= weights.view(N, 1)
                pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths
                pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

                self.assertClose(pred_loss_mean, cham_tensor)
                self.assertClose(pred_norm_loss_mean, norm_tensor)

                self._check_gradients(
                    cham_tensor,
                    norm_tensor,
                    pred_loss_mean,
                    pred_norm_loss_mean,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    points_normals.cloud1.normals_list(),
                    points_normals.n1,
                    points_normals.cloud2.normals_list(),
                    points_normals.n2,
                    x_lengths,
                    y_lengths,
                )

Nikhila Ravi's avatar
Nikhila Ravi committed
412
413
414
    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
415
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
416
417
418
419
420
421
422
423
424
425
426
427
428

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
429
430
431
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self.assertClose(norm_cloud, norm_tensor)
            self._check_gradients(
                cham_tensor,
                norm_tensor,
                cham_cloud,
                norm_cloud,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                points_normals.p1_lengths,
                points_normals.p2_lengths,
            )

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
475
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
476
477
478
479
480
481
482
483
484
485
486
487
488

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
489
490
491
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self._check_gradients(
                cham_tensor,
                None,
                cham_cloud,
                None,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                lengths1=points_normals.p1_lengths,
                lengths2=points_normals.p2_lengths,
            )

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
531
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
532
533
534
535
536
537
538
539
540
541
542
543
544
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
545
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
546
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
547
548
549
550
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
551
552
553
554
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
555
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
556
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
557
558
559
560
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
561
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
562
563
564
565
566

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
567
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
568

Nikhila Ravi's avatar
Nikhila Ravi committed
569
570
571
572
573
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    def test_single_direction_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            weights=weights,
            batch_reduction=None,
            point_reduction="mean",
            single_directional=True,
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1
        pred_loss_mean *= weights
        self.assertClose(loss, pred_loss_mean)

        pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1
        pred_loss_norm_mean *= weights
        self.assertClose(loss_norm, pred_loss_norm_mean)

        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
621
622
623
624
625
626
    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
627
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
643
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
644
645
646
647
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
648
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
649
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
650
651
652
653
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
654
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
655
656
657

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
658
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
659

Nikhila Ravi's avatar
Nikhila Ravi committed
660
661
662
663
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
664

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_single_directional_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized single directional chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            weights=weights,
            batch_reduction=None,
            point_reduction="sum",
            single_directional=True,
        )
        pred_loss_sum = pred_loss[0].sum(1)
        pred_loss_sum *= weights
        self.assertClose(loss, pred_loss_sum)

        pred_loss_norm_sum = pred_loss_norm[0].sum(1)
        pred_loss_norm_sum *= weights
        self.assertClose(loss_norm, pred_loss_norm_sum)

        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
727
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
728
729
730
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
731
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
732
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
733

Nikhila Ravi's avatar
Nikhila Ravi committed
734
735
736
737
738
739
740
741
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
742

Nikhila Ravi's avatar
Nikhila Ravi committed
743
744
745
746
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
747

Nikhila Ravi's avatar
Nikhila Ravi committed
748
749
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
750

Nikhila Ravi's avatar
Nikhila Ravi committed
751
752
753
754
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
755

Nikhila Ravi's avatar
Nikhila Ravi committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
772
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
773
774
775
776
777
778
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
779
780
781
782

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
783
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
784
785
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
786
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
787
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
788
789
790
791
792
793
794
795
796
797

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
798
799

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
800
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
801
802
803
804
805
806
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
807
808
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
809
810
811
812
813
814
815
816
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
817
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
818
819
820
821
822
823
824

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
825
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
826
827
828
829
830

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
831
832
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
833
834
835
836
837
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
838
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
839
840

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
841
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
842
843
844
845
846

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
847
848
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
849
850
851
852
853
854
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
855
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
856
857
858
859
860

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
861
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
862
863
864
865
866

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
867
868
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
869
870
871
872
873
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
874
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
875
876

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
877
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
878

Nikhila Ravi's avatar
Nikhila Ravi committed
879
880
881
882
883
884
885
886
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

        # Error when point_reduction is not in ["mean", "sum"].
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, point_reduction=None)

facebook-github-bot's avatar
facebook-github-bot committed
887
888
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
Nikhila Ravi's avatar
Nikhila Ravi committed
889
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
890
891
892
893
894
895
896
897
898
899
900
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
901
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
902
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
903
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
904
905
906
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
907
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
908
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
909
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
910
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
911
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
912
913
914
915
916
917
918
919
920
921
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
922
923
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
924
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

946
947
948
949
950
951
952
953
954
955
956
957
958
    def test_invalid_norm(self):
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            chamfer_distance(p1, p2, norm=0)

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            chamfer_distance(p1, p2, norm=3)

959
960
961
962
963
964
965
966
967
968
969
    def test_empty_clouds(self):
        # Check that point_reduction doesn't divide by zero
        points1 = Pointclouds(points=[torch.zeros(0, 3), torch.zeros(10, 3)])
        points2 = Pointclouds(points=torch.ones(2, 40, 3))
        loss, _ = chamfer_distance(points1, points2, batch_reduction=None)
        self.assertClose(loss, torch.tensor([0.0, 6.0]))

        # Check that batch_reduction doesn't divide by zero
        loss2, _ = chamfer_distance(Pointclouds([]), Pointclouds([]))
        self.assertClose(loss2, torch.tensor(0.0))

facebook-github-bot's avatar
facebook-github-bot committed
970
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
971
    def chamfer_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
972
973
974
975
976
977
        batch_size: int,
        P1: int,
        P2: int,
        return_normals: bool,
        homogeneous: bool,
        device="cpu",
Nikhila Ravi's avatar
Nikhila Ravi committed
978
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
979
980
981
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
        l1 = points_normals.p1_lengths
        l2 = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
982
983
984
985
986
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
987
988
989
990
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
991
992
                points_normals.p1,
                points_normals.p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
993
994
                x_lengths=l1,
                y_lengths=l2,
Nikhila Ravi's avatar
Nikhila Ravi committed
995
996
997
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                weights=points_normals.weights,
facebook-github-bot's avatar
facebook-github-bot committed
998
999
1000
1001
1002
1003
1004
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1005
        batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1006
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1007
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1008
1009
1010
1011
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
1012
1013
1014
1015
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
facebook-github-bot's avatar
facebook-github-bot committed
1016
1017
1018
1019
            )
            torch.cuda.synchronize()

        return loss