test_chamfer.py 44.8 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
8
from collections import namedtuple
9

Nikhila Ravi's avatar
Nikhila Ravi committed
10
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
11
12
import torch
import torch.nn.functional as F
13
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
14
15
from pytorch3d.structures.pointclouds import Pointclouds

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
17
from .common_testing import get_random_cuda_device, TestCaseMixin

Nikhila Ravi's avatar
Nikhila Ravi committed
18
19
20
21
22

# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
23

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
24
25

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
26
27
28
29
30
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
31
32
33
    def init_pointclouds(
        N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
34
35
36
37
38
39
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
40
41
42
        low = 0 if allow_empty else 1
        p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
43
44
        P1 = p1_lengths.max().item()
        P2 = p2_lengths.max().item()
Nikhila Ravi's avatar
Nikhila Ravi committed
45
46
47
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
48
49
50
51
52
53
54
        p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 /= n1.norm(dim=-1, p=2, keepdim=True)
        n2 /= n2.norm(dim=-1, p=2, keepdim=True)

Nikhila Ravi's avatar
Nikhila Ravi committed
55
56
57
58
59
60
61
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
62
63
64
65
            p1_list.append(p1[i, :l1].clone())
            p2_list.append(p2[i, :l2].clone())
            n1_list.append(n1[i, :l1].clone())
            n2_list.append(n2[i, :l2].clone())
Nikhila Ravi's avatar
Nikhila Ravi committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
90
    @staticmethod
91
92
93
    def chamfer_distance_naive_pointclouds(
        p1, p2, norm: int = 2, device="cpu", abs_cosine=True
    ):
facebook-github-bot's avatar
facebook-github-bot committed
94
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
95
96
97
98
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
99
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

Nikhila Ravi's avatar
Nikhila Ravi committed
121
122
        is_x_heterogeneous = (x_lengths != P1).any()
        is_y_heterogeneous = (y_lengths != P2).any()
Nikhila Ravi's avatar
Nikhila Ravi committed
123
124
125
126
        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
127
128
129
130
131
132
133
134
                    if norm == 2:
                        dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
                    elif norm == 1:
                        dist[n, i1, i2] = torch.sum(
                            torch.abs(x[n, i1, :] - y[n, i2, :])
                        )
                    else:
                        raise ValueError("No support for norm %d" % (norm))
Nikhila Ravi's avatar
Nikhila Ravi committed
135
136
137

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
138

Nikhila Ravi's avatar
Nikhila Ravi committed
139
140
141
142
143
144
145
146
147
148
149
150
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
151
152
            cosine_sim1 = F.cosine_similarity(
                x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
Nikhila Ravi's avatar
Nikhila Ravi committed
153
            )
154
155
            cosine_sim2 = F.cosine_similarity(
                y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
Nikhila Ravi's avatar
Nikhila Ravi committed
156
157
            )

158
159
160
161
162
163
164
            if abs_cosine:
                lnorm1 = 1 - torch.abs(cosine_sim1)
                lnorm2 = 1 - torch.abs(cosine_sim2)
            else:
                lnorm1 = 1 - cosine_sim1
                lnorm2 = 1 - cosine_sim2

Nikhila Ravi's avatar
Nikhila Ravi committed
165
166
167
168
169
170
171
172
            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
173
174

    @staticmethod
175
176
177
    def chamfer_distance_naive(
        x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True
    ):
facebook-github-bot's avatar
facebook-github-bot committed
178
179
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
180
181
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
182
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
183
184
        N, P1, D = x.shape
        P2 = y.size(1)
Nikhila Ravi's avatar
Nikhila Ravi committed
185
        device = x.device
Nikhila Ravi's avatar
Nikhila Ravi committed
186
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
192
193
194
195
196
197
198
199
                    if norm == 2:
                        dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
                    elif norm == 1:
                        dist[n, i1, i2] = torch.sum(
                            torch.abs(x[n, i1, :] - y[n, i2, :])
                        )
                    else:
                        raise ValueError("No support for norm %d" % (norm))
facebook-github-bot's avatar
facebook-github-bot committed
200
201
202
203
204

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
205
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
206
207

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
208
209
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
210
211
212

            cosine_sim1 = F.cosine_similarity(
                x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
213
            )
214
215
            cosine_sim2 = F.cosine_similarity(
                y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
216
            )
217
218
219
220
221
222
223
224

            if abs_cosine:
                lnorm1 = 1 - torch.abs(cosine_sim1)
                lnorm2 = 1 - torch.abs(cosine_sim2)
            else:
                lnorm1 = 1 - cosine_sim1
                lnorm2 = 1 - cosine_sim2

facebook-github-bot's avatar
facebook-github-bot committed
225
226
227
228
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
229
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
230
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
231
232
233
234
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
235
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
236
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
237
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        for norm in [1, 2]:
            points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
            p1 = points_normals.p1
            p2 = points_normals.p2
            weights = points_normals.weights
            p11 = p1.detach().clone()
            p22 = p2.detach().clone()
            p11.requires_grad = True
            p22.requires_grad = True
            P1 = p1.shape[1]
            P2 = p2.shape[1]

            pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
                p1, p2, norm=norm
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
254

255
256
257
258
259
            # point_reduction = "mean".
            loss, loss_norm = chamfer_distance(p11, p22, weights=weights, norm=norm)
            pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
            pred_loss *= weights
            pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
260

261
262
            self.assertClose(loss, pred_loss)
            self.assertTrue(loss_norm is None)
facebook-github-bot's avatar
facebook-github-bot committed
263

264
265
            # Check gradients
            self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)
Nikhila Ravi's avatar
Nikhila Ravi committed
266
267

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
268
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
269
270
271
272
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
273
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
274
        N, max_P1, max_P2 = 3, 70, 70
Nikhila Ravi's avatar
Nikhila Ravi committed
275
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
276

277
278
279
280
281
        for norm in [1, 2]:
            points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
            weights = points_normals.weights
            x_lengths = points_normals.p1_lengths
            y_lengths = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
282

283
284
285
286
287
288
289
290
291
292
293
            # Chamfer with tensors as input for heterogeneous pointclouds.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                weights=weights,
                norm=norm,
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
294

295
296
297
298
            # Chamfer with pointclouds as input.
            pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
                points_normals.cloud1, points_normals.cloud2, norm=norm, device=device
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            # Mean reduction point loss.
            pred_loss[0] *= weights.view(N, 1)
            pred_loss[1] *= weights.view(N, 1)
            pred_loss_mean = (
                pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
            )
            pred_loss_mean = pred_loss_mean.sum()
            pred_loss_mean /= weights.sum()

            # Mean reduction norm loss.
            pred_norm_loss[0] *= weights.view(N, 1)
            pred_norm_loss[1] *= weights.view(N, 1)
            pred_norm_loss_mean = (
                pred_norm_loss[0].sum(1) / x_lengths
                + pred_norm_loss[1].sum(1) / y_lengths
            )
            pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            self.assertClose(pred_loss_mean, cham_tensor)
            self.assertClose(pred_norm_loss_mean, norm_tensor)

            self._check_gradients(
                cham_tensor,
                norm_tensor,
                pred_loss_mean,
                pred_norm_loss_mean,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                x_lengths,
                y_lengths,
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_single_directional_chamfer_vs_naive_pointcloud(self):
        """
        Test the single directional settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
        """
        N, max_P1, max_P2 = 3, 70, 70
        device = get_random_cuda_device()

        for norm in [1, 2]:
            for abs_cosine in [True, False]:
                points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
                weights = points_normals.weights
                x_lengths = points_normals.p1_lengths
                y_lengths = points_normals.p2_lengths

                # Chamfer with tensors as input for heterogeneous pointclouds.
                cham_tensor, norm_tensor = chamfer_distance(
                    points_normals.p1,
                    points_normals.p2,
                    x_normals=points_normals.n1,
                    y_normals=points_normals.n2,
                    x_lengths=points_normals.p1_lengths,
                    y_lengths=points_normals.p2_lengths,
                    weights=weights,
                    norm=norm,
                    single_directional=True,
                    abs_cosine=abs_cosine,
                )

                # Chamfer with pointclouds as input.
                (
                    pred_loss,
                    pred_norm_loss,
                ) = TestChamfer.chamfer_distance_naive_pointclouds(
                    points_normals.cloud1,
                    points_normals.cloud2,
                    norm=norm,
                    device=device,
                    abs_cosine=abs_cosine,
                )

                # Mean reduction point loss.
                pred_loss[0] *= weights.view(N, 1)
                pred_loss_mean = pred_loss[0].sum(1) / x_lengths
                pred_loss_mean = pred_loss_mean.sum()
                pred_loss_mean /= weights.sum()

                # Mean reduction norm loss.
                pred_norm_loss[0] *= weights.view(N, 1)
                pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths
                pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

                self.assertClose(pred_loss_mean, cham_tensor)
                self.assertClose(pred_norm_loss_mean, norm_tensor)

                self._check_gradients(
                    cham_tensor,
                    norm_tensor,
                    pred_loss_mean,
                    pred_norm_loss_mean,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    points_normals.cloud1.normals_list(),
                    points_normals.n1,
                    points_normals.cloud2.normals_list(),
                    points_normals.n2,
                    x_lengths,
                    y_lengths,
                )

Nikhila Ravi's avatar
Nikhila Ravi committed
412
413
414
    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
415
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
416
417
418
419
420
421
422
423

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
424
            (None, None),
Nikhila Ravi's avatar
Nikhila Ravi committed
425
        ]
426
        for point_reduction, batch_reduction in reductions:
Nikhila Ravi's avatar
Nikhila Ravi committed
427
428
            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
429
430
431
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            if point_reduction is None:
                cham_tensor_bidirectional = torch.hstack(
                    [cham_tensor[0], cham_tensor[1]]
                )
                norm_tensor_bidirectional = torch.hstack(
                    [norm_tensor[0], norm_tensor[1]]
                )
                cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]])
                norm_cloud_bidirectional = torch.hstack([norm_cloud[0], norm_cloud[1]])
                self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional)
                self.assertClose(norm_cloud_bidirectional, norm_tensor_bidirectional)
                self._check_gradients(
                    cham_tensor_bidirectional,
                    norm_tensor_bidirectional,
                    cham_cloud_bidirectional,
                    norm_cloud_bidirectional,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    points_normals.cloud1.normals_list(),
                    points_normals.n1,
                    points_normals.cloud2.normals_list(),
                    points_normals.n2,
                    points_normals.p1_lengths,
                    points_normals.p2_lengths,
                )
            else:
                self.assertClose(cham_cloud, cham_tensor)
                self.assertClose(norm_cloud, norm_tensor)
                self._check_gradients(
                    cham_tensor,
                    norm_tensor,
                    cham_cloud,
                    norm_cloud,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    points_normals.cloud1.normals_list(),
                    points_normals.n1,
                    points_normals.cloud2.normals_list(),
                    points_normals.n2,
                    points_normals.p1_lengths,
                    points_normals.p2_lengths,
                )
Nikhila Ravi's avatar
Nikhila Ravi committed
499
500
501
502

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
503
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
504
505
506
507
508
509
510
511

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
512
            (None, None),
Nikhila Ravi's avatar
Nikhila Ravi committed
513
        ]
514
        for point_reduction, batch_reduction in reductions:
Nikhila Ravi's avatar
Nikhila Ravi committed
515
516
            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
517
518
519
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
            if point_reduction is None:
                cham_tensor_bidirectional = torch.hstack(
                    [cham_tensor[0], cham_tensor[1]]
                )
                cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]])
                self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional)
                self._check_gradients(
                    cham_tensor_bidirectional,
                    None,
                    cham_cloud_bidirectional,
                    None,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    lengths1=points_normals.p1_lengths,
                    lengths2=points_normals.p2_lengths,
                )
            else:
                self.assertClose(cham_cloud, cham_tensor)
                self._check_gradients(
                    cham_tensor,
                    None,
                    cham_cloud,
                    None,
                    points_normals.cloud1.points_list(),
                    points_normals.p1,
                    points_normals.cloud2.points_list(),
                    points_normals.p2,
                    lengths1=points_normals.p1_lengths,
                    lengths2=points_normals.p2_lengths,
                )
Nikhila Ravi's avatar
Nikhila Ravi committed
571
572
573
574
575
576
577

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
578
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
579
580
581
582
583
584
585
586
587
588
589
590
591
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
592
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
593
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
594
595
596
597
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
598
599
600
601
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
602
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
603
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
604
605
606
607
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
608
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
609
610
611
612
613

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
614
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
615

Nikhila Ravi's avatar
Nikhila Ravi committed
616
617
618
619
620
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def test_single_direction_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            weights=weights,
            batch_reduction=None,
            point_reduction="mean",
            single_directional=True,
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1
        pred_loss_mean *= weights
        self.assertClose(loss, pred_loss_mean)

        pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1
        pred_loss_norm_mean *= weights
        self.assertClose(loss_norm, pred_loss_norm_mean)

        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
668
669
670
671
672
673
    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
674
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
690
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
691
692
693
694
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
695
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
696
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
697
698
699
700
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
701
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
702
703
704

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
705
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
706

Nikhila Ravi's avatar
Nikhila Ravi committed
707
708
709
710
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    def test_single_directional_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized single directional chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            weights=weights,
            batch_reduction=None,
            point_reduction="sum",
            single_directional=True,
        )
        pred_loss_sum = pred_loss[0].sum(1)
        pred_loss_sum *= weights
        self.assertClose(loss, pred_loss_sum)

        pred_loss_norm_sum = pred_loss_norm[0].sum(1)
        pred_loss_norm_sum *= weights
        self.assertClose(loss_norm, pred_loss_norm_sum)

        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    def test_chamfer_point_reduction_none(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = None and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        # point_reduction = None
        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            batch_reduction=None,
            point_reduction=None,
        )

        loss_bidirectional = torch.hstack([loss[0], loss[1]])
        pred_loss_bidirectional = torch.hstack([pred_loss[0], pred_loss[1]])
        loss_norm_bidirectional = torch.hstack([loss_norm[0], loss_norm[1]])
        pred_loss_norm_bidirectional = torch.hstack(
            [pred_loss_norm[0], pred_loss_norm[1]]
        )

        self.assertClose(loss_bidirectional, pred_loss_bidirectional)
        self.assertClose(loss_norm_bidirectional, pred_loss_norm_bidirectional)

        # Check gradients
        self._check_gradients(
            loss_bidirectional,
            loss_norm_bidirectional,
            pred_loss_bidirectional,
            pred_loss_norm_bidirectional,
            p1,
            p11,
            p2,
            p22,
        )

    def test_single_direction_chamfer_point_reduction_none(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = None and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

        # point_reduction = None
        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
            batch_reduction=None,
            point_reduction=None,
            single_directional=True,
        )

        self.assertClose(loss, pred_loss[0])
        self.assertClose(loss_norm, pred_loss_norm[0])

        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss[0], pred_loss_norm[0], p1, p11, p2, p22
        )

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
    def test_chamfer_point_reduction_max(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "max" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=None, y_normals=None
        )

        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=None,
            y_normals=None,
            weights=weights,
            batch_reduction=None,
            point_reduction="max",
        )
        pred_loss_max = torch.maximum(
            pred_loss[0].max(1).values, pred_loss[1].max(1).values
        )
        pred_loss_max *= weights
        self.assertClose(loss, pred_loss_max)

        self.assertIsNone(loss_norm)

        # Check gradients
        self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)

    def test_single_directional_chamfer_point_reduction_max(self):
        """
        Compare output of vectorized single directional chamfer loss with naive implementation
        for point_reduction = "max" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=None, y_normals=None
        )

        loss, loss_norm = chamfer_distance(
            p11,
            p22,
            x_normals=None,
            y_normals=None,
            weights=weights,
            batch_reduction=None,
            point_reduction="max",
            single_directional=True,
        )
        pred_loss_max = pred_loss[0].max(1).values
        pred_loss_max *= weights
        self.assertClose(loss, pred_loss_max)

        self.assertIsNone(loss_norm)

        # Check gradients
        self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)

Nikhila Ravi's avatar
Nikhila Ravi committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
946
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
947
948
949
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
950
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
951
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
952

Nikhila Ravi's avatar
Nikhila Ravi committed
953
954
955
956
957
958
959
960
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
961

Nikhila Ravi's avatar
Nikhila Ravi committed
962
963
964
965
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
966

Nikhila Ravi's avatar
Nikhila Ravi committed
967
968
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
969

Nikhila Ravi's avatar
Nikhila Ravi committed
970
971
972
973
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
974

Nikhila Ravi's avatar
Nikhila Ravi committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
991
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
992
993
994
995
996
997
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
998
999
1000
1001

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
1002
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
1003
1004
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
1005
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
1006
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
1017
1018

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
1019
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
1020
1021
1022
1023
1024
1025
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1026
1027
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
1028
1029
1030
1031
1032
1033
1034
1035
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1036
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
1037
1038
1039
1040
1041
1042
1043

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1044
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
1045
1046
1047
1048
1049

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1050
1051
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
1052
1053
1054
1055
1056
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1057
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
1058
1059

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1060
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
1061
1062
1063
1064
1065

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1066
1067
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
1068
1069
1070
1071
1072
1073
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1074
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
1075
1076
1077
1078
1079

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1080
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
1081
1082
1083
1084
1085

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1086
1087
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
1088
1089
1090
1091
1092
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1093
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
1094
1095

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1096
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
1097

Nikhila Ravi's avatar
Nikhila Ravi committed
1098
1099
1100
1101
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

1102
        # Error when point_reduction is not in ["mean", "sum", "max"] or None.
Nikhila Ravi's avatar
Nikhila Ravi committed
1103
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
1104
            chamfer_distance(p1, p2, weights=weights, point_reduction="min")
Nikhila Ravi's avatar
Nikhila Ravi committed
1105

facebook-github-bot's avatar
facebook-github-bot committed
1106
1107
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
Nikhila Ravi's avatar
Nikhila Ravi committed
1108
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1120
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
1121
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1122
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
1123
1124
1125
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
1126
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
1127
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1128
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
1129
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1130
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
1141
1142
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
1143
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    def test_invalid_norm(self):
        N, P1, P2 = 7, 10, 18
        device = get_random_cuda_device()
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            chamfer_distance(p1, p2, norm=0)

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            chamfer_distance(p1, p2, norm=3)

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    def test_empty_clouds(self):
        # Check that point_reduction doesn't divide by zero
        points1 = Pointclouds(points=[torch.zeros(0, 3), torch.zeros(10, 3)])
        points2 = Pointclouds(points=torch.ones(2, 40, 3))
        loss, _ = chamfer_distance(points1, points2, batch_reduction=None)
        self.assertClose(loss, torch.tensor([0.0, 6.0]))

        # Check that batch_reduction doesn't divide by zero
        loss2, _ = chamfer_distance(Pointclouds([]), Pointclouds([]))
        self.assertClose(loss2, torch.tensor(0.0))

facebook-github-bot's avatar
facebook-github-bot committed
1189
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
1190
    def chamfer_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1191
1192
1193
1194
1195
1196
        batch_size: int,
        P1: int,
        P2: int,
        return_normals: bool,
        homogeneous: bool,
        device="cpu",
Nikhila Ravi's avatar
Nikhila Ravi committed
1197
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1198
1199
1200
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
        l1 = points_normals.p1_lengths
        l2 = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
1201
1202
1203
1204
1205
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
1206
1207
1208
1209
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
1210
1211
                points_normals.p1,
                points_normals.p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1212
1213
                x_lengths=l1,
                y_lengths=l2,
Nikhila Ravi's avatar
Nikhila Ravi committed
1214
1215
1216
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                weights=points_normals.weights,
facebook-github-bot's avatar
facebook-github-bot committed
1217
1218
1219
1220
1221
1222
1223
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1224
        batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1225
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1226
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1227
1228
1229
1230
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
1231
1232
1233
1234
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
facebook-github-bot's avatar
facebook-github-bot committed
1235
1236
1237
1238
            )
            torch.cuda.synchronize()

        return loss