test_rasterize_meshes.py 55.3 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
9

import functools
import unittest

10
import torch
facebook-github-bot's avatar
facebook-github-bot committed
11
from pytorch3d import _C
12
13
from pytorch3d.renderer import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh import MeshRasterizer, RasterizationSettings
facebook-github-bot's avatar
facebook-github-bot committed
14
15
16
17
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
18
19
20
21
from pytorch3d.renderer.mesh.utils import (
    _clip_barycentric_coordinates,
    _interpolate_zbuf,
)
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25
26
from .common_testing import get_random_cuda_device, TestCaseMixin

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
27
28

class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
29
30
    def test_simple_python(self):
        device = torch.device("cpu")
31
        self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
32
33
        self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1)
        self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1)
34
        self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1)
35
        self._test_barycentric_clipping(rasterize_meshes_python, device, bin_size=-1)
36
        self._test_back_face_culling(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
37
38
39

    def test_simple_cpu_naive(self):
        device = torch.device("cpu")
40
41
42
43
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
44
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
45
46

    def test_simple_cuda_naive(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
47
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
48
49
50
51
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
52
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
53
54

    def test_simple_cuda_binned(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
55
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
56
57
58
59
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=5)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=5)
        self._test_behind_camera(rasterize_meshes, device, bin_size=5)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=5)
60
        self._test_back_face_culling(rasterize_meshes, device, bin_size=5)
facebook-github-bot's avatar
facebook-github-bot committed
61
62
63
64
65

    def test_python_vs_cpu_vs_cuda(self):
        torch.manual_seed(231)
        device = torch.device("cpu")
        image_size = 32
66
        blur_radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
67
68
        faces_per_pixel = 3

Nikhila Ravi's avatar
Nikhila Ravi committed
69
        for d in ["cpu", get_random_cuda_device()]:
facebook-github-bot's avatar
facebook-github-bot committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            device = torch.device(d)
            compare_grads = True
            # Mesh with a single face.
            verts1 = torch.tensor(
                [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]],
                dtype=torch.float32,
                requires_grad=True,
                device=device,
            )
            faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
            meshes1 = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes1, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Mesh with multiple faces.
            # fmt: off
            verts1 = torch.tensor(
                [
                    [ -0.5, 0.0,  0.1],  # noqa: E241, E201
                    [  0.0, 0.6,  0.5],  # noqa: E241, E201
                    [  0.5, 0.0,  0.7],  # noqa: E241, E201
                    [-0.25, 0.0,  0.9],  # noqa: E241, E201
                    [ 0.26, 0.5,  0.8],  # noqa: E241, E201
                    [ 0.76, 0.0,  0.8],  # noqa: E241, E201
                    [-0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ 0.61, 0.6,  0.6],  # noqa: E241, E201
                    [ 0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                    [  0.3, 0.6, -0.5],  # noqa: E241, E201
                    [  0.4, 0.0, -0.5],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
                requires_grad=True
            )
            faces1 = torch.tensor(
                [
                    [ 1, 0,  2],  # noqa: E241, E201
                    [ 4, 3,  5],  # noqa: E241, E201
                    [ 7, 6,  8],  # noqa: E241, E201
                    [10, 9, 11]   # noqa: E241, E201
                ],
                dtype=torch.int64,
                device=device,
            )
            # fmt: on
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.clone().detach()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Icosphere
            meshes = ico_sphere(device=device)
            verts1, faces1 = meshes.get_mesh_verts_faces(0)
            verts1.requires_grad = True
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

    def test_cpu_vs_cuda_naive(self):
        """
        Compare naive versions of cuda and cpp
        """

        torch.manual_seed(231)
        image_size = 64
171
        radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
172
173
174
175
176
177
178
        faces_per_pixel = 3
        device = torch.device("cpu")
        meshes_cpu = ico_sphere(0, device)
        verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes_cpu = Meshes(verts=[verts1], faces=[faces1])

Nikhila Ravi's avatar
Nikhila Ravi committed
179
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
180
181
182
183
184
        meshes_cuda = ico_sphere(0, device)
        verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0)
        verts2.requires_grad = True
        meshes_cuda = Meshes(verts=[verts2], faces=[faces2])

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        barycentric_clip = True
        args_cpu = (
            meshes_cpu,
            image_size,
            radius,
            faces_per_pixel,
            None,
            None,
            False,
            barycentric_clip,
            False,
        )
        args_cuda = (
            meshes_cuda,
            image_size,
            radius,
            faces_per_pixel,
            0,
            0,
            False,
            barycentric_clip,
            False,
        )
facebook-github-bot's avatar
facebook-github-bot committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        self._compare_impls(
            rasterize_meshes,
            rasterize_meshes,
            args_cpu,
            args_cuda,
            verts1,
            verts2,
            compare_grads=True,
        )

    def test_coarse_cpu(self):
        return self._test_coarse_rasterize(torch.device("cpu"))

    def test_coarse_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
222
        return self._test_coarse_rasterize(get_random_cuda_device())
facebook-github-bot's avatar
facebook-github-bot committed
223
224
225
226
227

    def test_cpp_vs_cuda_naive_vs_cuda_binned(self):
        # Make sure that the backward pass runs for all pathways
        image_size = 64  # test is too slow for very large images.
        N = 1
228
        radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        faces_per_pixel = 3

        grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3)

        device = torch.device("cpu")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        # Option I: CPU, naive
        args = (meshes, image_size, radius, faces_per_pixel)
        idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args)

        loss = (
            (zbuf1 * grad_zbuf).sum()
            + (dist1 * grad_dist).sum()
            + (bary1 * grad_bary).sum()
        )
        loss.backward()
        idx1 = idx1.data.cpu().clone()
        zbuf1 = zbuf1.data.cpu().clone()
        dist1 = dist1.data.cpu().clone()
        grad1 = verts.grad.data.cpu().clone()

        # Option II: CUDA, naive
Nikhila Ravi's avatar
Nikhila Ravi committed
257
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
258
259
260
261
262
263
264
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 0, 0)
        idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args)
Nikhila Ravi's avatar
Nikhila Ravi committed
265
266
267
        grad_zbuf = grad_zbuf.to(device)
        grad_dist = grad_dist.to(device)
        grad_bary = grad_bary.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        loss = (
            (zbuf2 * grad_zbuf).sum()
            + (dist2 * grad_dist).sum()
            + (bary2 * grad_bary).sum()
        )
        loss.backward()
        idx2 = idx2.data.cpu().clone()
        zbuf2 = zbuf2.data.cpu().clone()
        dist2 = dist2.data.cpu().clone()
        grad2 = verts.grad.data.cpu().clone()

        # Option III: CUDA, binned
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 32, 500)
        idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args)

        loss = (
            (zbuf3 * grad_zbuf).sum()
            + (dist3 * grad_dist).sum()
            + (bary3 * grad_bary).sum()
        )
        loss.backward()
        idx3 = idx3.data.cpu().clone()
        zbuf3 = zbuf3.data.cpu().clone()
        dist3 = dist3.data.cpu().clone()
        grad3 = verts.grad.data.cpu().clone()

        # Make sure everything was the same
        self.assertTrue((idx1 == idx2).all().item())
        self.assertTrue((idx1 == idx3).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
302
303
304
305
        self.assertClose(zbuf1, zbuf2, atol=1e-6)
        self.assertClose(zbuf1, zbuf3, atol=1e-6)
        self.assertClose(dist1, dist2, atol=1e-6)
        self.assertClose(dist1, dist3, atol=1e-6)
facebook-github-bot's avatar
facebook-github-bot committed
306

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
307
308
309
        self.assertClose(grad1, grad2, rtol=5e-3)  # flaky test
        self.assertClose(grad1, grad3, rtol=5e-3)
        self.assertClose(grad2, grad3, rtol=5e-3)
facebook-github-bot's avatar
facebook-github-bot committed
310
311
312
313

    def test_compare_coarse_cpu_vs_cuda(self):
        torch.manual_seed(231)
        N = 1
314
        image_size = (512, 512)
facebook-github-bot's avatar
facebook-github-bot committed
315
316
317
318
319
320
        blur_radius = 0.0
        bin_size = 32
        max_faces_per_bin = 20

        device = torch.device("cpu")

321
        meshes = ico_sphere(2, device)
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
325
326
        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
327
328

        bin_faces_cpu = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
329
330
331
332
333
334
335
336
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
337
        device = get_random_cuda_device()
338
        meshes = meshes.clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
339
340
341
342
343
344

        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
345
346

        bin_faces_cuda = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
347
348
349
350
351
352
353
354
355
356
357
358
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )

        # Bin faces might not be the same: CUDA version might write them in
        # any order. But if we sort the non-(-1) elements of the CUDA output
        # then they should be the same.
359

facebook-github-bot's avatar
facebook-github-bot committed
360
361
362
363
364
365
366
367
368
        for n in range(N):
            for by in range(bin_faces_cpu.shape[1]):
                for bx in range(bin_faces_cpu.shape[2]):
                    K = (bin_faces_cuda[n, by, bx] != -1).sum().item()
                    idxs_cpu = bin_faces_cpu[n, by, bx].tolist()
                    idxs_cuda = bin_faces_cuda[n, by, bx].tolist()
                    idxs_cuda[:K] = sorted(idxs_cuda[:K])
                    self.assertEqual(idxs_cpu, idxs_cuda)

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    def test_python_vs_cpp_bary_clip(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

    def test_cpp_vs_cuda_bary_clip(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

facebook-github-bot's avatar
facebook-github-bot committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    def test_python_vs_cpp_perspective_correct(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
417
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
418
419
420
421
422
423

    def test_cpp_vs_cuda_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
Nikhila Ravi's avatar
Nikhila Ravi committed
424
425
426
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
427
428
429
430
431
432
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
433
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
434
435

    def test_cuda_naive_vs_binned_perspective_correct(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
436
437
        device = get_random_cuda_device()
        meshes = ico_sphere(2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
438
439
440
441
442
443
444
445
446
447
448
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces2 = faces1.detach().clone()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs)
        args = ()
449
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
450

451
452
453
454
455
456
457
    def test_bin_size_error(self):
        meshes = ico_sphere(2)
        image_size = 1024
        bin_size = 16
        with self.assertRaisesRegex(ValueError, "bin_size too small"):
            rasterize_meshes(meshes, image_size, 0.0, 2, bin_size)

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def _test_back_face_culling(self, rasterize_meshes_fn, device, bin_size):
        # Square based pyramid mesh.
        # fmt: off
        verts = torch.tensor([
            [-0.5, 0.0,  0.5],  # noqa: E241 E201 Front right
            [ 0.5, 0.0,  0.5],  # noqa: E241 E201 Front left
            [ 0.5, 0.0,  1.5],  # noqa: E241 E201 Back left
            [-0.5, 0.0,  1.5],  # noqa: E241 E201 Back right
            [ 0.0, 1.0,  1.0]   # noqa: E241 E201 Top point of pyramid
        ], dtype=torch.float32, device=device)

        faces = torch.tensor([
            [2, 1, 0],  # noqa: E241 E201 Square base
            [3, 2, 0],  # noqa: E241 E201 Square base
            [1, 0, 4],  # noqa: E241 E201 Triangle on front
            [2, 4, 3],  # noqa: E241 E201 Triangle on back
            [3, 4, 0],  # noqa: E241 E201 Triangle on left side
            [1, 4, 2]   # noqa: E241 E201 Triangle on right side
        ], dtype=torch.int64, device=device)
        # fmt: on
        mesh = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": mesh,
            "image_size": 10,
            "faces_per_pixel": 2,
            "blur_radius": 0.0,
            "perspective_correct": False,
            "cull_backfaces": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # fmt: off
        pix_to_face_frontface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        pix_to_face_backface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        # fmt: on

Nikhila Ravi's avatar
Nikhila Ravi committed
517
        pix_to_face_padded = -(torch.ones_like(pix_to_face_frontface))
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        # Run with and without culling
        # Without culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, the back face (i.e. face 3) is
        # rasterized.
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_f[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_f[..., 1].squeeze() == pix_to_face_backface))

        # With culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, there are no faces rasterized
        kwargs["cull_backfaces"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_t[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_t[..., 1].squeeze() == pix_to_face_padded))

facebook-github-bot's avatar
facebook-github-bot committed
533
534
535
536
537
538
539
540
541
542
543
544
545
    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=False,
    ):
        idx1, zbuf1, bary1, dist1 = fn1(*args1)
        idx2, zbuf2, bary2, dist2 = fn2(*args2)
        self.assertTrue((idx1.cpu() == idx2.cpu()).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
546
547
548
        self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4)
        self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3)
        self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
549
550
551
552
553
554
555
556
557
558
559
560
561
        if not compare_grads:
            return

        # Compare gradients.
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(zbuf1)
        grad_dist = torch.randn_like(dist1)
        grad_bary = torch.randn_like(bary1)
        loss1 = (
            (dist1 * grad_dist).sum()
            + (zbuf1 * grad_zbuf).sum()
            + (bary1 * grad_bary).sum()
        )
562
563
564
565

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss1 += grad_var1.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
566
567
568
569
570
571
572
573
574
575
576
        loss1.backward()
        grad_verts1 = grad_var1.grad.data.clone().cpu()

        grad_zbuf = grad_zbuf.to(zbuf2)
        grad_dist = grad_dist.to(dist2)
        grad_bary = grad_bary.to(bary2)
        loss2 = (
            (dist2 * grad_dist).sum()
            + (zbuf2 * grad_zbuf).sum()
            + (bary2 * grad_bary).sum()
        )
577
578
579
580

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss2 += grad_var2.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
581
582
583
        grad_var1.grad.data.zero_()
        loss2.backward()
        grad_verts2 = grad_var2.grad.data.clone().cpu()
584
        self.assertClose(grad_verts1, grad_verts2, rtol=2e-3)
facebook-github-bot's avatar
facebook-github-bot committed
585

586
    def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None):
facebook-github-bot's avatar
facebook-github-bot committed
587
588
        # fmt: off
        verts = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
589
590
591
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 11,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
608

facebook-github-bot's avatar
facebook-github-bot committed
609
610
611
        kwargs["perspective_correct"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

612
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
613
614
615
616
        # idx and dists should be the same with or without perspecitve correction
        # fmt: off
        idx_expected = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
617
618
619
620
            [-1, -1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
621
622
623
624
625
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
626
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
627
        ], dtype=torch.int64, device=device).view(1, 11, 11, 1)
628

facebook-github-bot's avatar
facebook-github-bot committed
629
        dists_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
630
631
632
633
634
635
636
637
638
639
640
            [-1.,     -1.,     -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1., 0.1402,  0.1071,  0.1402,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., -    1., 0.1523,  0.0542,  0.0212,  0.0542,  0.1523,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 0.0955,  0.0214, -0.0003,  0.0214,  0.0955,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.1523,  0.0518,  0.0042, -0.0095,  0.0042,  0.0518, 0.1523,    -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.0955,  0.0214, -0.0003,  -0.032, -0.0003,  0.0214, 0.0955,    -1., -1.],  # noqa: E241, E201, B950
            [-1., 0.1523,  0.0518,  0.0042, -0.0095, -0.0476, -0.0095,  0.0042, 0.0518, 0.1523, -1.],  # noqa: E241, E201, B950
            [-1., 0.1084,  0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.],  # noqa: E241, E201, B950
            [-1., 0.1283,  0.0423,  0.0212,  0.0212,  0.0212,  0.0212,  0.0212, 0.0423, 0.1283, -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.1283,  0.1071,  0.1071,  0.1071,  0.1071,  0.1071, 0.1283,    -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1.,   -1., -1.]   # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
641
642
643
644
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)

        # zbuf and barycentric will be different with perspective correction
        zbuf_f_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
645
646
647
648
649
650
651
652
653
654
655
            [-1.,      -1.,     -1.,     -1.,     -1.,     -1.,      -1.,    -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1.,     -1., 24.0909, 24.0909, 24.0909,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,      15.,     15.,     15.,     15.,     15.,    15.,     15.,     -1., -1.],  # noqa: E241, E201, B950
            [-1., 12.7273,  12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.],  # noqa: E241, E201, B950
            [-1., 10.4545,  10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.],  # noqa: E241, E201, B950
            [-1.,  8.1818,   8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818, -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,       -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1., -1.],  # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
656
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
657

facebook-github-bot's avatar
facebook-github-bot committed
658
        zbuf_t_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
659
660
661
662
663
664
665
666
667
668
669
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1., 33.8461, 33.8462, 33.8462,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333,     -1., -1.],  # noqa: E241, E201, B950
            [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.],  # noqa: E241, E201, B950
            [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.],  # noqa: E241, E201, B950
            [-1.,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667, -1.],  # noqa: E241, E201, B950
            [-1.,      -1., 8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.]   # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
        # fmt: on

        self.assertTrue(torch.all(idx_f == idx_expected).item())
        self.assertTrue(torch.all(idx_t == idx_expected).item())
        dists_t_max_diff = (dists_t - dists_expected).abs().max().item()
        dists_f_max_diff = (dists_f - dists_expected).abs().max().item()
        self.assertLess(dists_t_max_diff, 1e-4)
        self.assertLess(dists_f_max_diff, 1e-4)
        zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item()
        zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item()
        self.assertLess(zbuf_f_max_diff, 1e-4)
        self.assertLess(zbuf_t_max_diff, 1e-4)

        # Check barycentrics by using them to re-compute zbuf
        z0 = verts[0, 2]
        z1 = verts[1, 2]
        z2 = verts[2, 2]
        w0_f, w1_f, w2_f = bary_f.unbind(dim=4)
        w0_t, w1_t, w2_t = bary_t.unbind(dim=4)
        zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2
        zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2
        mask = idx_expected != -1
693
694
        zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max()
        zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max()
facebook-github-bot's avatar
facebook-github-bot committed
695
696
697
        self.assertLess(zbuf_f_bary_diff, 1e-4)
        self.assertLess(zbuf_t_bary_diff, 1e-4)

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    def _test_barycentric_clipping(self, rasterize_meshes_fn, device, bin_size=None):
        # fmt: off
        verts = torch.tensor([
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 5,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
            "clip_barycentric_coords": False,  # Initially set this to false
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)

        # fmt: off
        expected_bary = torch.tensor([
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500, -0.2500,  1.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.5000,  0.5000,  1.0000],  # noqa: E241, E201
                [-0.0000, -0.0000,  1.0000],  # noqa: E241, E201
                [ 0.5000, -0.5000,  1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500,  0.7500,  0.5000],  # noqa: E241, E201
                [ 0.2500,  0.2500,  0.5000],  # noqa: E241, E201
                [ 0.7500, -0.2500,  0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-0.5000,  1.5000, -0.0000],  # noqa: E241, E201
                [-0.0000,  1.0000, -0.0000],  # noqa: E241, E201
                [ 0.5000,  0.5000, -0.0000],  # noqa: E241, E201
                [ 1.0000, -0.0000, -0.0000],  # noqa: E241, E201
                [ 1.5000, -0.5000,  0.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [ 0.2500,  1.2500, -0.5000],  # noqa: E241, E201
                [ 0.7500,  0.7500, -0.5000],  # noqa: E241, E201
                [ 1.2500,  0.2500, -0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ]
        ], dtype=torch.float32, device=device).view(1, 5, 5, 1, 3)
        # fmt: on

        self.assertClose(expected_bary, bary_f, atol=1e-4)

        # calculate the expected clipped barycentrics and zbuf
        expected_bary_clipped = _clip_barycentric_coordinates(expected_bary)
        expected_z_clipped = _interpolate_zbuf(idx_f, expected_bary_clipped, meshes)

        kwargs["clip_barycentric_coords"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

        self.assertClose(expected_bary_clipped, bary_t, atol=1e-4)
        self.assertClose(expected_z_clipped, zbuf_t, atol=1e-4)

facebook-github-bot's avatar
facebook-github-bot committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None):
        """
        All verts are behind the camera so nothing should get rasterized.
        """
        N = 1
        # fmt: off
        verts = torch.tensor(
            [
                [ -0.5, 0.0, -0.1],  # noqa: E241, E201
                [  0.0, 0.6, -0.1],  # noqa: E241, E201
                [  0.5, 0.0, -0.1],  # noqa: E241, E201
                [-0.25, 0.0, -0.9],  # noqa: E241, E201
                [ 0.25, 0.5, -0.9],  # noqa: E241, E201
                [ 0.75, 0.0, -0.9],  # noqa: E241, E201
                [ -0.4, 0.0, -0.5],  # noqa: E241, E201
                [  0.6, 0.6, -0.5],  # noqa: E241, E201
                [  0.8, 0.0, -0.5],  # noqa: E241, E201
                [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                [  0.3, 0.6, -0.5],  # noqa: E241, E201
                [  0.4, 0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
        faces = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        image_size = 16
        faces_per_pixel = 1
        radius = 0.2
        idx_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.int64,
            device=device,
        )
        bary_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel, 3),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        zbuf_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        dists_expected = zbuf_expected.clone()
        if bin_size == -1:
            # naive python version with no binning
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel
            )
        else:
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel, bin_size
            )
        idx_same = (idx == idx_expected).all().item()
        zbuf_same = (zbuf == zbuf_expected).all().item()
        self.assertTrue(idx_same)
        self.assertTrue(zbuf_same)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
840
841
        self.assertClose(bary, bary_expected)
        self.assertClose(dists, dists_expected)
facebook-github-bot's avatar
facebook-github-bot committed
842
843
844
845

    def _simple_triangle_raster(self, raster_fn, device, bin_size=None):
        image_size = 10

846
847
        # Mesh with a single non-symmetrical face - this will help
        # check that the XY directions are correctly oriented.
facebook-github-bot's avatar
facebook-github-bot committed
848
        verts0 = torch.tensor(
849
            [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]],
facebook-github-bot's avatar
facebook-github-bot committed
850
851
852
853
854
855
856
857
858
            dtype=torch.float32,
            device=device,
        )
        faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device)

        # Mesh with two overlapping faces.
        # fmt: off
        verts1 = torch.tensor(
            [
859
                [-0.9, -0.2, 0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
                [ 0.0,  0.6, 0.1],  # noqa: E241, E201
                [ 0.7, -0.4, 0.1],  # noqa: E241, E201
                [-0.7,  0.4, 0.5],  # noqa: E241, E201
                [ 0.0, -0.6, 0.5],  # noqa: E241, E201
                [ 0.7,  0.4, 0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt on
        faces1 = torch.tensor(
            [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device
        )

874
875
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
        # k = 0, closest point.
facebook-github-bot's avatar
facebook-github-bot committed
876
877
878
879
880
881
882
        # fmt off
        expected_p2face_k0 = torch.tensor(
            [
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
883
884
885
886
                    [-1, -1, -1, -1,  0, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  0,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
887
888
889
890
891
892
893
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
894
895
896
897
898
                    [-1, -1, -1, -1, -1,  1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  2,  2,  1,  1,  1,  2, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1,  1, -1],  # noqa: E241, E201
                    [-1, -1,  1,  1,  1,  2, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
899
900
901
902
903
904
905
906
907
908
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k0 = torch.tensor(
            [
Nikhila Ravi's avatar
Nikhila Ravi committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
                [
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1, 0.1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1]   # noqa: E241, E201
                ],
                [
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, 0.1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1],  # noqa: E241, E201
                    [-1, -1, 0.1, 0.1, 0.1, 0.5,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1]   # noqa: E241, E201
                ]
facebook-github-bot's avatar
facebook-github-bot committed
933
934
935
936
937
938
939
940
941
            ],
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1])

        # k = 1, second closest point.
        expected_p2face_k1 = expected_p2face_k0.clone()
942
        expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1
facebook-github-bot's avatar
facebook-github-bot committed
943
944
945

        # fmt: off
        expected_p2face_k1[1, :] = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
946
947
948
949
950
951
952
953
954
955
956
957
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
            ],
facebook-github-bot's avatar
facebook-github-bot committed
958
959
960
961
962
963
964
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k1 = expected_zbuf_k0.clone()
        expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1
        expected_zbuf_k1[1, :] = torch.tensor(
            [
965
966
967
968
969
970
971
972
973
974
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
975
976
977
978
979
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
980
981
982
983

        #  Coordinate conventions +Y up, +Z in, +X left
        if bin_size == -1:
            # simple python, no bin_size
984
            p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2)
985
986
987
988
989
        else:
            p2face, zbuf, bary, pix_dists = raster_fn(
                meshes, image_size, 0.0, 2, bin_size
            )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
990
991
992
993
        self.assertClose(p2face[..., 0], expected_p2face_k0)
        self.assertClose(zbuf[..., 0], expected_zbuf_k0)
        self.assertClose(p2face[..., 1], expected_p2face_k1)
        self.assertClose(zbuf[..., 1], expected_zbuf_k1)
facebook-github-bot's avatar
facebook-github-bot committed
994
995
996
997
998
999
1000

    def _simple_blurry_raster(self, raster_fn, device, bin_size=None):
        """
        Check that pix_to_face, dist and zbuf values are invariant to the
        ordering of faces.
        """
        image_size = 10
1001
        blur_radius = 0.12**2
facebook-github-bot's avatar
facebook-github-bot committed
1002
1003
1004
1005
1006
        faces_per_pixel = 1

        # fmt: off
        verts = torch.tensor(
            [
1007
                [ -0.3, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1008
                [  0.0, 0.6,  0.1],  # noqa: E241, E201
1009
                [  0.8, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
                [-0.25, 0.0,  0.9],  # noqa: E241, E201
                [0.25,  0.5,  0.9],  # noqa: E241, E201
                [0.75,  0.0,  0.9],  # noqa: E241, E201
                [-0.4,  0.0,  0.5],  # noqa: E241, E201
                [ 0.6,  0.6,  0.5],  # noqa: E241, E201
                [ 0.8,  0.0,  0.5],  # noqa: E241, E201
                [-0.2,  0.0, -0.5],  # noqa: E241, E201  face behind the camera
                [ 0.3,  0.6, -0.5],  # noqa: E241, E201
                [ 0.4,  0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
1023
1024
        # Face with index 0 is non symmetric about the X and Y axis to
        # test that the positive Y and X directions are correct in the output.
facebook-github-bot's avatar
facebook-github-bot committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
        faces_packed = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        expected_p2f = torch.tensor(
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
1034
1035
1036
1037
                [-1,  2,  2,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  2,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf = torch.tensor(
            [
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.5,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.1,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on

        for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]):
            faces = faces_packed[order]  # rearrange order of faces.
            mesh = Meshes(verts=[verts], faces=[faces])
            if bin_size == -1:
1068
                # simple python, no bin size arg
facebook-github-bot's avatar
facebook-github-bot committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel
                )
            else:
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel, bin_size
                )
            if i == 0:
                expected_dists = dists
            p2f = expected_p2f.clone()
            p2f[expected_p2f == 0] = order.index(0)
            p2f[expected_p2f == 1] = order.index(1)
            p2f[expected_p2f == 2] = order.index(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1082
1083
1084
            self.assertClose(pix_to_face.squeeze(), p2f)
            self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5)
            self.assertClose(dists, expected_dists)
facebook-github-bot's avatar
facebook-github-bot committed
1085
1086

    def _test_coarse_rasterize(self, device):
1087
        image_size = (16, 16)
1088
1089
1090
        # No blurring. This test checks that the XY directions are
        # correctly oriented.
        blur_radius = 0.0
facebook-github-bot's avatar
facebook-github-bot committed
1091
1092
1093
1094
1095
1096
        bin_size = 8
        max_faces_per_bin = 3

        # fmt: off
        verts = torch.tensor(
            [
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
                [-0.5,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,   0.6,  0.1],  # noqa: E241, E201
                [-0.1,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.3,   0.5,  0.4],  # noqa: E241, E201
                [0.75,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.2,  -0.3,  0.9],  # noqa: E241, E201
                [ 0.3,  -0.7,  0.9],  # noqa: E241, E201
                [ 0.6,  -0.3,  0.9],  # noqa: E241, E201
                [-0.4,   0.0, -1.5],  # noqa: E241, E201
                [ 0.6,   0.6, -1.5],  # noqa: E241, E201
                [ 0.8,   0.0, -1.5],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1109
1110
1111
            ],
            device=device,
        )
1112
1113
        # Expected faces using axes convention +Y down, + X right, +Z in
        # Non symmetrical triangles i.e face 0 and 3 are in one bin only
facebook-github-bot's avatar
facebook-github-bot committed
1114
1115
        faces = torch.tensor(
            [
1116
1117
1118
                [ 1, 0,  2],  # noqa: E241, E201  bin 01 only
                [ 4, 3,  5],  # noqa: E241, E201  all bins
                [ 7, 6,  8],  # noqa: E241, E201  bin 10 only
facebook-github-bot's avatar
facebook-github-bot committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
                [10, 9, 11],  # noqa: E241, E201  negative z, should not appear.
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts], faces=[faces])
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()

1131
        # Expected faces using axes convention +Y down, + X right, + Z in
facebook-github-bot's avatar
facebook-github-bot committed
1132
        bin_faces_expected = (
1133
            torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1134
1135
            * -1
        )
1136
        bin_faces_expected[0, 1, 1, 0] = torch.tensor([1])
Nikhila Ravi's avatar
Nikhila Ravi committed
1137
1138
1139
        bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2])
        bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1])
        bin_faces_expected[0, 0, 0, 0] = torch.tensor([1])
1140
1141

        # +Y up, +X left, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
        bin_faces = _C._rasterize_meshes_coarse(
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
1151

1152
        bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all()
facebook-github-bot's avatar
facebook-github-bot committed
1153
1154
        self.assertTrue(bin_faces_same.item() == 1)

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    def test_order_of_ties(self):
        # Tied faces are rasterized in index order
        # We rasterize a mesh with many faces.
        device = torch.device("cuda:0")
        verts = -5 * torch.eye(3, dtype=torch.float32, device=device)[None]
        faces = torch.arange(3, device=device, dtype=torch.int64).expand(1, 100, 3)
        mesh = Meshes(verts=verts, faces=faces)

        R, T = look_at_view_transform(2.7, 0.0, 0.0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

        raster_settings = RasterizationSettings(
            image_size=28, faces_per_pixel=100, bin_size=0
        )
        rasterizer = MeshRasterizer(raster_settings=raster_settings)

        out = rasterizer(mesh, cameras=cameras)
        self.assertClose(
            out.pix_to_face[0, 14:, :14],
            torch.arange(100, device=device).expand(14, 14, 100),
        )

facebook-github-bot's avatar
facebook-github-bot committed
1177
1178
    @staticmethod
    def rasterize_meshes_python_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1179
1180
1181
1182
1183
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1184
1185
1186
1187
1188
1189
    ):
        device = torch.device("cpu")
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1190
1191
1192
            rasterize_meshes_python(
                meshes_batch, image_size, blur_radius, faces_per_pixel
            )
facebook-github-bot's avatar
facebook-github-bot committed
1193
1194
1195
1196
1197

        return rasterize

    @staticmethod
    def rasterize_meshes_cpu_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1198
1199
1200
1201
1202
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1203
1204
1205
1206
1207
    ):
        meshes = ico_sphere(ico_level, torch.device("cpu"))
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1208
1209
1210
1211
1212
1213
1214
            rasterize_meshes(
                meshes_batch,
                image_size,
                blur_radius,
                faces_per_pixel=faces_per_pixel,
                bin_size=0,
            )
facebook-github-bot's avatar
facebook-github-bot committed
1215
1216
1217
1218
1219
1220
1221
1222
1223

        return rasterize

    @staticmethod
    def rasterize_meshes_cuda_with_init(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
Nikhila Ravi's avatar
Nikhila Ravi committed
1224
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1225
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1226
1227
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
facebook-github-bot's avatar
facebook-github-bot committed
1228
        meshes_batch = meshes.extend(num_meshes)
Nikhila Ravi's avatar
Nikhila Ravi committed
1229
        torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1230
1231

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1232
1233
            rasterize_meshes(meshes_batch, image_size, blur_radius, faces_per_pixel)
            torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1234
1235

        return rasterize
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

    @staticmethod
    def bm_rasterize_meshes_with_clipping(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
        dist: float,
    ):
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        settings = RasterizationSettings(
            image_size=image_size,
            blur_radius=blur_radius,
            faces_per_pixel=faces_per_pixel,
            z_clip_value=1e-2,
            perspective_correct=True,
            cull_to_frustum=True,
        )

        # The camera is positioned so that the image plane intersects
        # the mesh and some faces are partially behind the image plane.
        R, T = look_at_view_transform(dist, 0, 0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
        rasterizer = MeshRasterizer(raster_settings=settings, cameras=cameras)

        # Transform the meshes to projec them onto the image plane
        meshes_screen = rasterizer.transform(meshes_batch)
        torch.cuda.synchronize(device)

        def rasterize():
            # Only measure rasterization speed (including clipping)
            rasterize_meshes(
                meshes_screen,
                image_size,
                blur_radius,
                faces_per_pixel,
                z_clip_value=1e-2,
                perspective_correct=True,
                cull_to_frustum=True,
            )
            torch.cuda.synchronize(device)

        return rasterize