test_rasterize_meshes.py 52.2 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import functools
import unittest

6
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
7
from common_testing import TestCaseMixin, get_random_cuda_device
facebook-github-bot's avatar
facebook-github-bot committed
8
9
10
11
12
from pytorch3d import _C
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
13
14
15
16
from pytorch3d.renderer.mesh.utils import (
    _clip_barycentric_coordinates,
    _interpolate_zbuf,
)
facebook-github-bot's avatar
facebook-github-bot committed
17
18
19
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
20
21

class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
22
23
    def test_simple_python(self):
        device = torch.device("cpu")
24
        self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
25
26
        self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1)
        self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1)
27
        self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1)
28
        self._test_barycentric_clipping(rasterize_meshes_python, device, bin_size=-1)
29
        self._test_back_face_culling(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
30
31
32

    def test_simple_cpu_naive(self):
        device = torch.device("cpu")
33
34
35
36
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
37
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
38
39

    def test_simple_cuda_naive(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
40
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
41
42
43
44
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
45
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
46
47

    def test_simple_cuda_binned(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
48
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
49
50
51
52
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=5)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=5)
        self._test_behind_camera(rasterize_meshes, device, bin_size=5)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=5)
53
        self._test_back_face_culling(rasterize_meshes, device, bin_size=5)
facebook-github-bot's avatar
facebook-github-bot committed
54
55
56
57
58
59
60
61

    def test_python_vs_cpu_vs_cuda(self):
        torch.manual_seed(231)
        device = torch.device("cpu")
        image_size = 32
        blur_radius = 0.1 ** 2
        faces_per_pixel = 3

Nikhila Ravi's avatar
Nikhila Ravi committed
62
        for d in ["cpu", get_random_cuda_device()]:
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            device = torch.device(d)
            compare_grads = True
            # Mesh with a single face.
            verts1 = torch.tensor(
                [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]],
                dtype=torch.float32,
                requires_grad=True,
                device=device,
            )
            faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
            meshes1 = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes1, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Mesh with multiple faces.
            # fmt: off
            verts1 = torch.tensor(
                [
                    [ -0.5, 0.0,  0.1],  # noqa: E241, E201
                    [  0.0, 0.6,  0.5],  # noqa: E241, E201
                    [  0.5, 0.0,  0.7],  # noqa: E241, E201
                    [-0.25, 0.0,  0.9],  # noqa: E241, E201
                    [ 0.26, 0.5,  0.8],  # noqa: E241, E201
                    [ 0.76, 0.0,  0.8],  # noqa: E241, E201
                    [-0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ 0.61, 0.6,  0.6],  # noqa: E241, E201
                    [ 0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                    [  0.3, 0.6, -0.5],  # noqa: E241, E201
                    [  0.4, 0.0, -0.5],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
                requires_grad=True
            )
            faces1 = torch.tensor(
                [
                    [ 1, 0,  2],  # noqa: E241, E201
                    [ 4, 3,  5],  # noqa: E241, E201
                    [ 7, 6,  8],  # noqa: E241, E201
                    [10, 9, 11]   # noqa: E241, E201
                ],
                dtype=torch.int64,
                device=device,
            )
            # fmt: on
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.clone().detach()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Icosphere
            meshes = ico_sphere(device=device)
            verts1, faces1 = meshes.get_mesh_verts_faces(0)
            verts1.requires_grad = True
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

    def test_cpu_vs_cuda_naive(self):
        """
        Compare naive versions of cuda and cpp
        """

        torch.manual_seed(231)
        image_size = 64
        radius = 0.1 ** 2
        faces_per_pixel = 3
        device = torch.device("cpu")
        meshes_cpu = ico_sphere(0, device)
        verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes_cpu = Meshes(verts=[verts1], faces=[faces1])

Nikhila Ravi's avatar
Nikhila Ravi committed
172
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
173
174
175
176
177
        meshes_cuda = ico_sphere(0, device)
        verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0)
        verts2.requires_grad = True
        meshes_cuda = Meshes(verts=[verts2], faces=[faces2])

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        barycentric_clip = True
        args_cpu = (
            meshes_cpu,
            image_size,
            radius,
            faces_per_pixel,
            None,
            None,
            False,
            barycentric_clip,
            False,
        )
        args_cuda = (
            meshes_cuda,
            image_size,
            radius,
            faces_per_pixel,
            0,
            0,
            False,
            barycentric_clip,
            False,
        )
facebook-github-bot's avatar
facebook-github-bot committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        self._compare_impls(
            rasterize_meshes,
            rasterize_meshes,
            args_cpu,
            args_cuda,
            verts1,
            verts2,
            compare_grads=True,
        )

    def test_coarse_cpu(self):
        return self._test_coarse_rasterize(torch.device("cpu"))

    def test_coarse_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
215
        return self._test_coarse_rasterize(get_random_cuda_device())
facebook-github-bot's avatar
facebook-github-bot committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    def test_cpp_vs_cuda_naive_vs_cuda_binned(self):
        # Make sure that the backward pass runs for all pathways
        image_size = 64  # test is too slow for very large images.
        N = 1
        radius = 0.1 ** 2
        faces_per_pixel = 3

        grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3)

        device = torch.device("cpu")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        # Option I: CPU, naive
        args = (meshes, image_size, radius, faces_per_pixel)
        idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args)

        loss = (
            (zbuf1 * grad_zbuf).sum()
            + (dist1 * grad_dist).sum()
            + (bary1 * grad_bary).sum()
        )
        loss.backward()
        idx1 = idx1.data.cpu().clone()
        zbuf1 = zbuf1.data.cpu().clone()
        dist1 = dist1.data.cpu().clone()
        grad1 = verts.grad.data.cpu().clone()

        # Option II: CUDA, naive
Nikhila Ravi's avatar
Nikhila Ravi committed
250
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
251
252
253
254
255
256
257
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 0, 0)
        idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args)
Nikhila Ravi's avatar
Nikhila Ravi committed
258
259
260
        grad_zbuf = grad_zbuf.to(device)
        grad_dist = grad_dist.to(device)
        grad_bary = grad_bary.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        loss = (
            (zbuf2 * grad_zbuf).sum()
            + (dist2 * grad_dist).sum()
            + (bary2 * grad_bary).sum()
        )
        loss.backward()
        idx2 = idx2.data.cpu().clone()
        zbuf2 = zbuf2.data.cpu().clone()
        dist2 = dist2.data.cpu().clone()
        grad2 = verts.grad.data.cpu().clone()

        # Option III: CUDA, binned
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 32, 500)
        idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args)

        loss = (
            (zbuf3 * grad_zbuf).sum()
            + (dist3 * grad_dist).sum()
            + (bary3 * grad_bary).sum()
        )
        loss.backward()
        idx3 = idx3.data.cpu().clone()
        zbuf3 = zbuf3.data.cpu().clone()
        dist3 = dist3.data.cpu().clone()
        grad3 = verts.grad.data.cpu().clone()

        # Make sure everything was the same
        self.assertTrue((idx1 == idx2).all().item())
        self.assertTrue((idx1 == idx3).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
295
296
297
298
        self.assertClose(zbuf1, zbuf2, atol=1e-6)
        self.assertClose(zbuf1, zbuf3, atol=1e-6)
        self.assertClose(dist1, dist2, atol=1e-6)
        self.assertClose(dist1, dist3, atol=1e-6)
facebook-github-bot's avatar
facebook-github-bot committed
299

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
300
301
302
        self.assertClose(grad1, grad2, rtol=5e-3)  # flaky test
        self.assertClose(grad1, grad3, rtol=5e-3)
        self.assertClose(grad2, grad3, rtol=5e-3)
facebook-github-bot's avatar
facebook-github-bot committed
303
304
305
306
307
308
309
310
311
312
313

    def test_compare_coarse_cpu_vs_cuda(self):
        torch.manual_seed(231)
        N = 1
        image_size = 512
        blur_radius = 0.0
        bin_size = 32
        max_faces_per_bin = 20

        device = torch.device("cpu")

314
        meshes = ico_sphere(2, device)
facebook-github-bot's avatar
facebook-github-bot committed
315
316
317
318
319
        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
320
321

        bin_faces_cpu = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
325
326
327
328
329
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
330
        device = get_random_cuda_device()
331
        meshes = meshes.clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
332
333
334
335
336
337

        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
338
339

        bin_faces_cuda = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
340
341
342
343
344
345
346
347
348
349
350
351
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )

        # Bin faces might not be the same: CUDA version might write them in
        # any order. But if we sort the non-(-1) elements of the CUDA output
        # then they should be the same.
352

facebook-github-bot's avatar
facebook-github-bot committed
353
354
355
356
357
358
359
360
361
        for n in range(N):
            for by in range(bin_faces_cpu.shape[1]):
                for bx in range(bin_faces_cpu.shape[2]):
                    K = (bin_faces_cuda[n, by, bx] != -1).sum().item()
                    idxs_cpu = bin_faces_cpu[n, by, bx].tolist()
                    idxs_cuda = bin_faces_cuda[n, by, bx].tolist()
                    idxs_cuda[:K] = sorted(idxs_cuda[:K])
                    self.assertEqual(idxs_cpu, idxs_cuda)

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    def test_python_vs_cpp_bary_clip(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

    def test_cpp_vs_cuda_bary_clip(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

facebook-github-bot's avatar
facebook-github-bot committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    def test_python_vs_cpp_perspective_correct(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
410
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
411
412
413
414
415
416

    def test_cpp_vs_cuda_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
Nikhila Ravi's avatar
Nikhila Ravi committed
417
418
419
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
420
421
422
423
424
425
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
426
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
427
428

    def test_cuda_naive_vs_binned_perspective_correct(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
429
430
        device = get_random_cuda_device()
        meshes = ico_sphere(2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
431
432
433
434
435
436
437
438
439
440
441
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces2 = faces1.detach().clone()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs)
        args = ()
442
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
443

444
445
446
447
448
449
450
    def test_bin_size_error(self):
        meshes = ico_sphere(2)
        image_size = 1024
        bin_size = 16
        with self.assertRaisesRegex(ValueError, "bin_size too small"):
            rasterize_meshes(meshes, image_size, 0.0, 2, bin_size)

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    def _test_back_face_culling(self, rasterize_meshes_fn, device, bin_size):
        # Square based pyramid mesh.
        # fmt: off
        verts = torch.tensor([
            [-0.5, 0.0,  0.5],  # noqa: E241 E201 Front right
            [ 0.5, 0.0,  0.5],  # noqa: E241 E201 Front left
            [ 0.5, 0.0,  1.5],  # noqa: E241 E201 Back left
            [-0.5, 0.0,  1.5],  # noqa: E241 E201 Back right
            [ 0.0, 1.0,  1.0]   # noqa: E241 E201 Top point of pyramid
        ], dtype=torch.float32, device=device)

        faces = torch.tensor([
            [2, 1, 0],  # noqa: E241 E201 Square base
            [3, 2, 0],  # noqa: E241 E201 Square base
            [1, 0, 4],  # noqa: E241 E201 Triangle on front
            [2, 4, 3],  # noqa: E241 E201 Triangle on back
            [3, 4, 0],  # noqa: E241 E201 Triangle on left side
            [1, 4, 2]   # noqa: E241 E201 Triangle on right side
        ], dtype=torch.int64, device=device)
        # fmt: on
        mesh = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": mesh,
            "image_size": 10,
            "faces_per_pixel": 2,
            "blur_radius": 0.0,
            "perspective_correct": False,
            "cull_backfaces": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # fmt: off
        pix_to_face_frontface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        pix_to_face_backface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        # fmt: on

Nikhila Ravi's avatar
Nikhila Ravi committed
510
        pix_to_face_padded = -(torch.ones_like(pix_to_face_frontface))
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        # Run with and without culling
        # Without culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, the back face (i.e. face 3) is
        # rasterized.
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_f[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_f[..., 1].squeeze() == pix_to_face_backface))

        # With culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, there are no faces rasterized
        kwargs["cull_backfaces"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_t[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_t[..., 1].squeeze() == pix_to_face_padded))

facebook-github-bot's avatar
facebook-github-bot committed
526
527
528
529
530
531
532
533
534
535
536
537
538
    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=False,
    ):
        idx1, zbuf1, bary1, dist1 = fn1(*args1)
        idx2, zbuf2, bary2, dist2 = fn2(*args2)
        self.assertTrue((idx1.cpu() == idx2.cpu()).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
539
540
541
        self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4)
        self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3)
        self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        if not compare_grads:
            return

        # Compare gradients.
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(zbuf1)
        grad_dist = torch.randn_like(dist1)
        grad_bary = torch.randn_like(bary1)
        loss1 = (
            (dist1 * grad_dist).sum()
            + (zbuf1 * grad_zbuf).sum()
            + (bary1 * grad_bary).sum()
        )
        loss1.backward()
        grad_verts1 = grad_var1.grad.data.clone().cpu()

        grad_zbuf = grad_zbuf.to(zbuf2)
        grad_dist = grad_dist.to(dist2)
        grad_bary = grad_bary.to(bary2)
        loss2 = (
            (dist2 * grad_dist).sum()
            + (zbuf2 * grad_zbuf).sum()
            + (bary2 * grad_bary).sum()
        )
        grad_var1.grad.data.zero_()
        loss2.backward()
        grad_verts2 = grad_var2.grad.data.clone().cpu()
569
        self.assertClose(grad_verts1, grad_verts2, rtol=2e-3)
facebook-github-bot's avatar
facebook-github-bot committed
570

571
    def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None):
facebook-github-bot's avatar
facebook-github-bot committed
572
573
        # fmt: off
        verts = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
574
575
576
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 11,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
593

facebook-github-bot's avatar
facebook-github-bot committed
594
595
596
        kwargs["perspective_correct"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

597
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
598
599
600
601
        # idx and dists should be the same with or without perspecitve correction
        # fmt: off
        idx_expected = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
602
603
604
605
            [-1, -1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
606
607
608
609
610
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
611
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
612
        ], dtype=torch.int64, device=device).view(1, 11, 11, 1)
613

facebook-github-bot's avatar
facebook-github-bot committed
614
        dists_expected = torch.tensor([
615
616
617
618
619
620
621
622
623
624
625
            [-1.,     -1.,     -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1., 0.1402,  0.1071,  0.1402,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., -    1., 0.1523,  0.0542,  0.0212,  0.0542,  0.1523,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 0.0955,  0.0214, -0.0003,  0.0214,  0.0955,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1523,  0.0518,  0.0042, -0.0095,  0.0042,  0.0518, 0.1523,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.0955,  0.0214, -0.0003,  -0.032, -0.0003,  0.0214, 0.0955,    -1., -1.],  # noqa: E241, E201
            [-1., 0.1523,  0.0518,  0.0042, -0.0095, -0.0476, -0.0095,  0.0042, 0.0518, 0.1523, -1.],  # noqa: E241, E201
            [-1., 0.1084,  0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.],  # noqa: E241, E201
            [-1., 0.1283,  0.0423,  0.0212,  0.0212,  0.0212,  0.0212,  0.0212, 0.0423, 0.1283, -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1283,  0.1071,  0.1071,  0.1071,  0.1071,  0.1071, 0.1283,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1.,   -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
626
627
628
629
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)

        # zbuf and barycentric will be different with perspective correction
        zbuf_f_expected = torch.tensor([
630
631
632
633
634
635
636
637
638
639
640
            [-1.,      -1.,     -1.,     -1.,     -1.,     -1.,      -1.,    -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1.,     -1., 24.0909, 24.0909, 24.0909,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,      15.,     15.,     15.,     15.,     15.,    15.,     15.,     -1., -1.],  # noqa: E241, E201
            [-1., 12.7273,  12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.],  # noqa: E241, E201
            [-1., 10.4545,  10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.],  # noqa: E241, E201
            [-1.,  8.1818,   8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818, -1.],  # noqa: E241, E201
            [-1.,      -1.,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,     -1., -1.],  # noqa: E241, E201
            [-1.,       -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1., -1.],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
641
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
642

facebook-github-bot's avatar
facebook-github-bot committed
643
        zbuf_t_expected = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
644
645
646
647
648
649
650
651
652
653
654
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1., 33.8461, 33.8462, 33.8462,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333,     -1., -1.],  # noqa: E241, E201
            [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.],  # noqa: E241, E201
            [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.],  # noqa: E241, E201
            [-1.,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667, -1.],  # noqa: E241, E201
            [-1.,      -1., 8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
        # fmt: on

        self.assertTrue(torch.all(idx_f == idx_expected).item())
        self.assertTrue(torch.all(idx_t == idx_expected).item())
        dists_t_max_diff = (dists_t - dists_expected).abs().max().item()
        dists_f_max_diff = (dists_f - dists_expected).abs().max().item()
        self.assertLess(dists_t_max_diff, 1e-4)
        self.assertLess(dists_f_max_diff, 1e-4)
        zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item()
        zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item()
        self.assertLess(zbuf_f_max_diff, 1e-4)
        self.assertLess(zbuf_t_max_diff, 1e-4)

        # Check barycentrics by using them to re-compute zbuf
        z0 = verts[0, 2]
        z1 = verts[1, 2]
        z2 = verts[2, 2]
        w0_f, w1_f, w2_f = bary_f.unbind(dim=4)
        w0_t, w1_t, w2_t = bary_t.unbind(dim=4)
        zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2
        zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2
        mask = idx_expected != -1
678
679
        zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max()
        zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max()
facebook-github-bot's avatar
facebook-github-bot committed
680
681
682
        self.assertLess(zbuf_f_bary_diff, 1e-4)
        self.assertLess(zbuf_t_bary_diff, 1e-4)

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    def _test_barycentric_clipping(self, rasterize_meshes_fn, device, bin_size=None):
        # fmt: off
        verts = torch.tensor([
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 5,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
            "clip_barycentric_coords": False,  # Initially set this to false
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)

        # fmt: off
        expected_bary = torch.tensor([
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500, -0.2500,  1.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.5000,  0.5000,  1.0000],  # noqa: E241, E201
                [-0.0000, -0.0000,  1.0000],  # noqa: E241, E201
                [ 0.5000, -0.5000,  1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500,  0.7500,  0.5000],  # noqa: E241, E201
                [ 0.2500,  0.2500,  0.5000],  # noqa: E241, E201
                [ 0.7500, -0.2500,  0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-0.5000,  1.5000, -0.0000],  # noqa: E241, E201
                [-0.0000,  1.0000, -0.0000],  # noqa: E241, E201
                [ 0.5000,  0.5000, -0.0000],  # noqa: E241, E201
                [ 1.0000, -0.0000, -0.0000],  # noqa: E241, E201
                [ 1.5000, -0.5000,  0.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [ 0.2500,  1.2500, -0.5000],  # noqa: E241, E201
                [ 0.7500,  0.7500, -0.5000],  # noqa: E241, E201
                [ 1.2500,  0.2500, -0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ]
        ], dtype=torch.float32, device=device).view(1, 5, 5, 1, 3)
        # fmt: on

        self.assertClose(expected_bary, bary_f, atol=1e-4)

        # calculate the expected clipped barycentrics and zbuf
        expected_bary_clipped = _clip_barycentric_coordinates(expected_bary)
        expected_z_clipped = _interpolate_zbuf(idx_f, expected_bary_clipped, meshes)

        kwargs["clip_barycentric_coords"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

        self.assertClose(expected_bary_clipped, bary_t, atol=1e-4)
        self.assertClose(expected_z_clipped, zbuf_t, atol=1e-4)

facebook-github-bot's avatar
facebook-github-bot committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
    def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None):
        """
        All verts are behind the camera so nothing should get rasterized.
        """
        N = 1
        # fmt: off
        verts = torch.tensor(
            [
                [ -0.5, 0.0, -0.1],  # noqa: E241, E201
                [  0.0, 0.6, -0.1],  # noqa: E241, E201
                [  0.5, 0.0, -0.1],  # noqa: E241, E201
                [-0.25, 0.0, -0.9],  # noqa: E241, E201
                [ 0.25, 0.5, -0.9],  # noqa: E241, E201
                [ 0.75, 0.0, -0.9],  # noqa: E241, E201
                [ -0.4, 0.0, -0.5],  # noqa: E241, E201
                [  0.6, 0.6, -0.5],  # noqa: E241, E201
                [  0.8, 0.0, -0.5],  # noqa: E241, E201
                [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                [  0.3, 0.6, -0.5],  # noqa: E241, E201
                [  0.4, 0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
        faces = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        image_size = 16
        faces_per_pixel = 1
        radius = 0.2
        idx_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.int64,
            device=device,
        )
        bary_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel, 3),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        zbuf_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        dists_expected = zbuf_expected.clone()
        if bin_size == -1:
            # naive python version with no binning
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel
            )
        else:
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel, bin_size
            )
        idx_same = (idx == idx_expected).all().item()
        zbuf_same = (zbuf == zbuf_expected).all().item()
        self.assertTrue(idx_same)
        self.assertTrue(zbuf_same)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
825
826
        self.assertClose(bary, bary_expected)
        self.assertClose(dists, dists_expected)
facebook-github-bot's avatar
facebook-github-bot committed
827
828
829
830

    def _simple_triangle_raster(self, raster_fn, device, bin_size=None):
        image_size = 10

831
832
        # Mesh with a single non-symmetrical face - this will help
        # check that the XY directions are correctly oriented.
facebook-github-bot's avatar
facebook-github-bot committed
833
        verts0 = torch.tensor(
834
            [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]],
facebook-github-bot's avatar
facebook-github-bot committed
835
836
837
838
839
840
841
842
843
            dtype=torch.float32,
            device=device,
        )
        faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device)

        # Mesh with two overlapping faces.
        # fmt: off
        verts1 = torch.tensor(
            [
844
                [-0.9, -0.2, 0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
                [ 0.0,  0.6, 0.1],  # noqa: E241, E201
                [ 0.7, -0.4, 0.1],  # noqa: E241, E201
                [-0.7,  0.4, 0.5],  # noqa: E241, E201
                [ 0.0, -0.6, 0.5],  # noqa: E241, E201
                [ 0.7,  0.4, 0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt on
        faces1 = torch.tensor(
            [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device
        )

859
860
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
        # k = 0, closest point.
facebook-github-bot's avatar
facebook-github-bot committed
861
862
863
864
865
866
867
        # fmt off
        expected_p2face_k0 = torch.tensor(
            [
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
868
869
870
871
                    [-1, -1, -1, -1,  0, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  0,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
872
873
874
875
876
877
878
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
879
880
881
882
883
                    [-1, -1, -1, -1, -1,  1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  2,  2,  1,  1,  1,  2, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1,  1, -1],  # noqa: E241, E201
                    [-1, -1,  1,  1,  1,  2, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
884
885
886
887
888
889
890
891
892
893
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k0 = torch.tensor(
            [
Nikhila Ravi's avatar
Nikhila Ravi committed
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
                [
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1, 0.1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1]   # noqa: E241, E201
                ],
                [
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, 0.1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1],  # noqa: E241, E201
                    [-1, -1, 0.1, 0.1, 0.1, 0.5,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1]   # noqa: E241, E201
                ]
facebook-github-bot's avatar
facebook-github-bot committed
918
919
920
921
922
923
924
925
926
            ],
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1])

        # k = 1, second closest point.
        expected_p2face_k1 = expected_p2face_k0.clone()
927
        expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1
facebook-github-bot's avatar
facebook-github-bot committed
928
929
930

        # fmt: off
        expected_p2face_k1[1, :] = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
931
932
933
934
935
936
937
938
939
940
941
942
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
            ],
facebook-github-bot's avatar
facebook-github-bot committed
943
944
945
946
947
948
949
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k1 = expected_zbuf_k0.clone()
        expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1
        expected_zbuf_k1[1, :] = torch.tensor(
            [
950
951
952
953
954
955
956
957
958
959
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
960
961
962
963
964
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
965
966
967
968

        #  Coordinate conventions +Y up, +Z in, +X left
        if bin_size == -1:
            # simple python, no bin_size
969
            p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2)
970
971
972
973
974
        else:
            p2face, zbuf, bary, pix_dists = raster_fn(
                meshes, image_size, 0.0, 2, bin_size
            )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
975
976
977
978
        self.assertClose(p2face[..., 0], expected_p2face_k0)
        self.assertClose(zbuf[..., 0], expected_zbuf_k0)
        self.assertClose(p2face[..., 1], expected_p2face_k1)
        self.assertClose(zbuf[..., 1], expected_zbuf_k1)
facebook-github-bot's avatar
facebook-github-bot committed
979
980
981
982
983
984
985
986
987
988
989
990
991

    def _simple_blurry_raster(self, raster_fn, device, bin_size=None):
        """
        Check that pix_to_face, dist and zbuf values are invariant to the
        ordering of faces.
        """
        image_size = 10
        blur_radius = 0.12 ** 2
        faces_per_pixel = 1

        # fmt: off
        verts = torch.tensor(
            [
992
                [ -0.3, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
993
                [  0.0, 0.6,  0.1],  # noqa: E241, E201
994
                [  0.8, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
                [-0.25, 0.0,  0.9],  # noqa: E241, E201
                [0.25,  0.5,  0.9],  # noqa: E241, E201
                [0.75,  0.0,  0.9],  # noqa: E241, E201
                [-0.4,  0.0,  0.5],  # noqa: E241, E201
                [ 0.6,  0.6,  0.5],  # noqa: E241, E201
                [ 0.8,  0.0,  0.5],  # noqa: E241, E201
                [-0.2,  0.0, -0.5],  # noqa: E241, E201  face behind the camera
                [ 0.3,  0.6, -0.5],  # noqa: E241, E201
                [ 0.4,  0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
1008
1009
        # Face with index 0 is non symmetric about the X and Y axis to
        # test that the positive Y and X directions are correct in the output.
facebook-github-bot's avatar
facebook-github-bot committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
        faces_packed = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        expected_p2f = torch.tensor(
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
1019
1020
1021
1022
                [-1,  2,  2,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  2,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf = torch.tensor(
            [
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.5,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.1,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on

        for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]):
            faces = faces_packed[order]  # rearrange order of faces.
            mesh = Meshes(verts=[verts], faces=[faces])
            if bin_size == -1:
1053
                # simple python, no bin size arg
facebook-github-bot's avatar
facebook-github-bot committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel
                )
            else:
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel, bin_size
                )
            if i == 0:
                expected_dists = dists
            p2f = expected_p2f.clone()
            p2f[expected_p2f == 0] = order.index(0)
            p2f[expected_p2f == 1] = order.index(1)
            p2f[expected_p2f == 2] = order.index(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1067
1068
1069
            self.assertClose(pix_to_face.squeeze(), p2f)
            self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5)
            self.assertClose(dists, expected_dists)
facebook-github-bot's avatar
facebook-github-bot committed
1070
1071
1072

    def _test_coarse_rasterize(self, device):
        image_size = 16
1073
1074
1075
        # No blurring. This test checks that the XY directions are
        # correctly oriented.
        blur_radius = 0.0
facebook-github-bot's avatar
facebook-github-bot committed
1076
1077
1078
1079
1080
1081
        bin_size = 8
        max_faces_per_bin = 3

        # fmt: off
        verts = torch.tensor(
            [
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
                [-0.5,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,   0.6,  0.1],  # noqa: E241, E201
                [-0.1,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.3,   0.5,  0.4],  # noqa: E241, E201
                [0.75,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.2,  -0.3,  0.9],  # noqa: E241, E201
                [ 0.3,  -0.7,  0.9],  # noqa: E241, E201
                [ 0.6,  -0.3,  0.9],  # noqa: E241, E201
                [-0.4,   0.0, -1.5],  # noqa: E241, E201
                [ 0.6,   0.6, -1.5],  # noqa: E241, E201
                [ 0.8,   0.0, -1.5],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1094
1095
1096
            ],
            device=device,
        )
1097
1098
        # Expected faces using axes convention +Y down, + X right, +Z in
        # Non symmetrical triangles i.e face 0 and 3 are in one bin only
facebook-github-bot's avatar
facebook-github-bot committed
1099
1100
        faces = torch.tensor(
            [
1101
1102
1103
                [ 1, 0,  2],  # noqa: E241, E201  bin 01 only
                [ 4, 3,  5],  # noqa: E241, E201  all bins
                [ 7, 6,  8],  # noqa: E241, E201  bin 10 only
facebook-github-bot's avatar
facebook-github-bot committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
                [10, 9, 11],  # noqa: E241, E201  negative z, should not appear.
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts], faces=[faces])
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()

1116
        # Expected faces using axes convention +Y down, + X right, + Z in
facebook-github-bot's avatar
facebook-github-bot committed
1117
        bin_faces_expected = (
1118
            torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1119
1120
            * -1
        )
1121
        bin_faces_expected[0, 1, 1, 0] = torch.tensor([1])
Nikhila Ravi's avatar
Nikhila Ravi committed
1122
1123
1124
        bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2])
        bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1])
        bin_faces_expected[0, 0, 0, 0] = torch.tensor([1])
1125
1126

        # +Y up, +X left, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
        bin_faces = _C._rasterize_meshes_coarse(
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
1136

1137
        bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all()
facebook-github-bot's avatar
facebook-github-bot committed
1138
1139
1140
1141
        self.assertTrue(bin_faces_same.item() == 1)

    @staticmethod
    def rasterize_meshes_python_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1142
1143
1144
1145
1146
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1147
1148
1149
1150
1151
1152
    ):
        device = torch.device("cpu")
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1153
1154
1155
            rasterize_meshes_python(
                meshes_batch, image_size, blur_radius, faces_per_pixel
            )
facebook-github-bot's avatar
facebook-github-bot committed
1156
1157
1158
1159
1160

        return rasterize

    @staticmethod
    def rasterize_meshes_cpu_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1161
1162
1163
1164
1165
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1166
1167
1168
1169
1170
    ):
        meshes = ico_sphere(ico_level, torch.device("cpu"))
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1171
1172
1173
1174
1175
1176
1177
            rasterize_meshes(
                meshes_batch,
                image_size,
                blur_radius,
                faces_per_pixel=faces_per_pixel,
                bin_size=0,
            )
facebook-github-bot's avatar
facebook-github-bot committed
1178
1179
1180
1181
1182
1183
1184
1185
1186

        return rasterize

    @staticmethod
    def rasterize_meshes_cuda_with_init(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
Nikhila Ravi's avatar
Nikhila Ravi committed
1187
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1188
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1189
1190
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
facebook-github-bot's avatar
facebook-github-bot committed
1191
        meshes_batch = meshes.extend(num_meshes)
Nikhila Ravi's avatar
Nikhila Ravi committed
1192
        torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1193
1194

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1195
1196
            rasterize_meshes(meshes_batch, image_size, blur_radius, faces_per_pixel)
            torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1197
1198

        return rasterize