test_rasterize_meshes.py 55.3 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
9

import functools
import unittest

10
import torch
11
from common_testing import get_random_cuda_device, TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
12
from pytorch3d import _C
13
14
from pytorch3d.renderer import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh import MeshRasterizer, RasterizationSettings
facebook-github-bot's avatar
facebook-github-bot committed
15
16
17
18
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
19
20
21
22
from pytorch3d.renderer.mesh.utils import (
    _clip_barycentric_coordinates,
    _interpolate_zbuf,
)
facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
27

class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
28
29
    def test_simple_python(self):
        device = torch.device("cpu")
30
        self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
31
32
        self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1)
        self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1)
33
        self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1)
34
        self._test_barycentric_clipping(rasterize_meshes_python, device, bin_size=-1)
35
        self._test_back_face_culling(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
36
37
38

    def test_simple_cpu_naive(self):
        device = torch.device("cpu")
39
40
41
42
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
43
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
44
45

    def test_simple_cuda_naive(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
46
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
47
48
49
50
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
51
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
52
53

    def test_simple_cuda_binned(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
54
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
55
56
57
58
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=5)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=5)
        self._test_behind_camera(rasterize_meshes, device, bin_size=5)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=5)
59
        self._test_back_face_culling(rasterize_meshes, device, bin_size=5)
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62
63
64

    def test_python_vs_cpu_vs_cuda(self):
        torch.manual_seed(231)
        device = torch.device("cpu")
        image_size = 32
65
        blur_radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
66
67
        faces_per_pixel = 3

Nikhila Ravi's avatar
Nikhila Ravi committed
68
        for d in ["cpu", get_random_cuda_device()]:
facebook-github-bot's avatar
facebook-github-bot committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            device = torch.device(d)
            compare_grads = True
            # Mesh with a single face.
            verts1 = torch.tensor(
                [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]],
                dtype=torch.float32,
                requires_grad=True,
                device=device,
            )
            faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
            meshes1 = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes1, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Mesh with multiple faces.
            # fmt: off
            verts1 = torch.tensor(
                [
                    [ -0.5, 0.0,  0.1],  # noqa: E241, E201
                    [  0.0, 0.6,  0.5],  # noqa: E241, E201
                    [  0.5, 0.0,  0.7],  # noqa: E241, E201
                    [-0.25, 0.0,  0.9],  # noqa: E241, E201
                    [ 0.26, 0.5,  0.8],  # noqa: E241, E201
                    [ 0.76, 0.0,  0.8],  # noqa: E241, E201
                    [-0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ 0.61, 0.6,  0.6],  # noqa: E241, E201
                    [ 0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                    [  0.3, 0.6, -0.5],  # noqa: E241, E201
                    [  0.4, 0.0, -0.5],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
                requires_grad=True
            )
            faces1 = torch.tensor(
                [
                    [ 1, 0,  2],  # noqa: E241, E201
                    [ 4, 3,  5],  # noqa: E241, E201
                    [ 7, 6,  8],  # noqa: E241, E201
                    [10, 9, 11]   # noqa: E241, E201
                ],
                dtype=torch.int64,
                device=device,
            )
            # fmt: on
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.clone().detach()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Icosphere
            meshes = ico_sphere(device=device)
            verts1, faces1 = meshes.get_mesh_verts_faces(0)
            verts1.requires_grad = True
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

    def test_cpu_vs_cuda_naive(self):
        """
        Compare naive versions of cuda and cpp
        """

        torch.manual_seed(231)
        image_size = 64
170
        radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
171
172
173
174
175
176
177
        faces_per_pixel = 3
        device = torch.device("cpu")
        meshes_cpu = ico_sphere(0, device)
        verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes_cpu = Meshes(verts=[verts1], faces=[faces1])

Nikhila Ravi's avatar
Nikhila Ravi committed
178
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
179
180
181
182
183
        meshes_cuda = ico_sphere(0, device)
        verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0)
        verts2.requires_grad = True
        meshes_cuda = Meshes(verts=[verts2], faces=[faces2])

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        barycentric_clip = True
        args_cpu = (
            meshes_cpu,
            image_size,
            radius,
            faces_per_pixel,
            None,
            None,
            False,
            barycentric_clip,
            False,
        )
        args_cuda = (
            meshes_cuda,
            image_size,
            radius,
            faces_per_pixel,
            0,
            0,
            False,
            barycentric_clip,
            False,
        )
facebook-github-bot's avatar
facebook-github-bot committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        self._compare_impls(
            rasterize_meshes,
            rasterize_meshes,
            args_cpu,
            args_cuda,
            verts1,
            verts2,
            compare_grads=True,
        )

    def test_coarse_cpu(self):
        return self._test_coarse_rasterize(torch.device("cpu"))

    def test_coarse_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
221
        return self._test_coarse_rasterize(get_random_cuda_device())
facebook-github-bot's avatar
facebook-github-bot committed
222
223
224
225
226

    def test_cpp_vs_cuda_naive_vs_cuda_binned(self):
        # Make sure that the backward pass runs for all pathways
        image_size = 64  # test is too slow for very large images.
        N = 1
227
        radius = 0.1**2
facebook-github-bot's avatar
facebook-github-bot committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        faces_per_pixel = 3

        grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3)

        device = torch.device("cpu")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        # Option I: CPU, naive
        args = (meshes, image_size, radius, faces_per_pixel)
        idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args)

        loss = (
            (zbuf1 * grad_zbuf).sum()
            + (dist1 * grad_dist).sum()
            + (bary1 * grad_bary).sum()
        )
        loss.backward()
        idx1 = idx1.data.cpu().clone()
        zbuf1 = zbuf1.data.cpu().clone()
        dist1 = dist1.data.cpu().clone()
        grad1 = verts.grad.data.cpu().clone()

        # Option II: CUDA, naive
Nikhila Ravi's avatar
Nikhila Ravi committed
256
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
257
258
259
260
261
262
263
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 0, 0)
        idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args)
Nikhila Ravi's avatar
Nikhila Ravi committed
264
265
266
        grad_zbuf = grad_zbuf.to(device)
        grad_dist = grad_dist.to(device)
        grad_bary = grad_bary.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        loss = (
            (zbuf2 * grad_zbuf).sum()
            + (dist2 * grad_dist).sum()
            + (bary2 * grad_bary).sum()
        )
        loss.backward()
        idx2 = idx2.data.cpu().clone()
        zbuf2 = zbuf2.data.cpu().clone()
        dist2 = dist2.data.cpu().clone()
        grad2 = verts.grad.data.cpu().clone()

        # Option III: CUDA, binned
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 32, 500)
        idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args)

        loss = (
            (zbuf3 * grad_zbuf).sum()
            + (dist3 * grad_dist).sum()
            + (bary3 * grad_bary).sum()
        )
        loss.backward()
        idx3 = idx3.data.cpu().clone()
        zbuf3 = zbuf3.data.cpu().clone()
        dist3 = dist3.data.cpu().clone()
        grad3 = verts.grad.data.cpu().clone()

        # Make sure everything was the same
        self.assertTrue((idx1 == idx2).all().item())
        self.assertTrue((idx1 == idx3).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
301
302
303
304
        self.assertClose(zbuf1, zbuf2, atol=1e-6)
        self.assertClose(zbuf1, zbuf3, atol=1e-6)
        self.assertClose(dist1, dist2, atol=1e-6)
        self.assertClose(dist1, dist3, atol=1e-6)
facebook-github-bot's avatar
facebook-github-bot committed
305

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
306
307
308
        self.assertClose(grad1, grad2, rtol=5e-3)  # flaky test
        self.assertClose(grad1, grad3, rtol=5e-3)
        self.assertClose(grad2, grad3, rtol=5e-3)
facebook-github-bot's avatar
facebook-github-bot committed
309
310
311
312

    def test_compare_coarse_cpu_vs_cuda(self):
        torch.manual_seed(231)
        N = 1
313
        image_size = (512, 512)
facebook-github-bot's avatar
facebook-github-bot committed
314
315
316
317
318
319
        blur_radius = 0.0
        bin_size = 32
        max_faces_per_bin = 20

        device = torch.device("cpu")

320
        meshes = ico_sphere(2, device)
facebook-github-bot's avatar
facebook-github-bot committed
321
322
323
324
325
        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
326
327

        bin_faces_cpu = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
328
329
330
331
332
333
334
335
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
336
        device = get_random_cuda_device()
337
        meshes = meshes.clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
338
339
340
341
342
343

        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
344
345

        bin_faces_cuda = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
346
347
348
349
350
351
352
353
354
355
356
357
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )

        # Bin faces might not be the same: CUDA version might write them in
        # any order. But if we sort the non-(-1) elements of the CUDA output
        # then they should be the same.
358

facebook-github-bot's avatar
facebook-github-bot committed
359
360
361
362
363
364
365
366
367
        for n in range(N):
            for by in range(bin_faces_cpu.shape[1]):
                for bx in range(bin_faces_cpu.shape[2]):
                    K = (bin_faces_cuda[n, by, bx] != -1).sum().item()
                    idxs_cpu = bin_faces_cpu[n, by, bx].tolist()
                    idxs_cuda = bin_faces_cuda[n, by, bx].tolist()
                    idxs_cuda[:K] = sorted(idxs_cuda[:K])
                    self.assertEqual(idxs_cpu, idxs_cuda)

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def test_python_vs_cpp_bary_clip(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

    def test_cpp_vs_cuda_bary_clip(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

facebook-github-bot's avatar
facebook-github-bot committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    def test_python_vs_cpp_perspective_correct(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
416
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
417
418
419
420
421
422

    def test_cpp_vs_cuda_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
Nikhila Ravi's avatar
Nikhila Ravi committed
423
424
425
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
426
427
428
429
430
431
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
432
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
433
434

    def test_cuda_naive_vs_binned_perspective_correct(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
435
436
        device = get_random_cuda_device()
        meshes = ico_sphere(2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
437
438
439
440
441
442
443
444
445
446
447
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces2 = faces1.detach().clone()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs)
        args = ()
448
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
449

450
451
452
453
454
455
456
    def test_bin_size_error(self):
        meshes = ico_sphere(2)
        image_size = 1024
        bin_size = 16
        with self.assertRaisesRegex(ValueError, "bin_size too small"):
            rasterize_meshes(meshes, image_size, 0.0, 2, bin_size)

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def _test_back_face_culling(self, rasterize_meshes_fn, device, bin_size):
        # Square based pyramid mesh.
        # fmt: off
        verts = torch.tensor([
            [-0.5, 0.0,  0.5],  # noqa: E241 E201 Front right
            [ 0.5, 0.0,  0.5],  # noqa: E241 E201 Front left
            [ 0.5, 0.0,  1.5],  # noqa: E241 E201 Back left
            [-0.5, 0.0,  1.5],  # noqa: E241 E201 Back right
            [ 0.0, 1.0,  1.0]   # noqa: E241 E201 Top point of pyramid
        ], dtype=torch.float32, device=device)

        faces = torch.tensor([
            [2, 1, 0],  # noqa: E241 E201 Square base
            [3, 2, 0],  # noqa: E241 E201 Square base
            [1, 0, 4],  # noqa: E241 E201 Triangle on front
            [2, 4, 3],  # noqa: E241 E201 Triangle on back
            [3, 4, 0],  # noqa: E241 E201 Triangle on left side
            [1, 4, 2]   # noqa: E241 E201 Triangle on right side
        ], dtype=torch.int64, device=device)
        # fmt: on
        mesh = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": mesh,
            "image_size": 10,
            "faces_per_pixel": 2,
            "blur_radius": 0.0,
            "perspective_correct": False,
            "cull_backfaces": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # fmt: off
        pix_to_face_frontface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        pix_to_face_backface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        # fmt: on

Nikhila Ravi's avatar
Nikhila Ravi committed
516
        pix_to_face_padded = -(torch.ones_like(pix_to_face_frontface))
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        # Run with and without culling
        # Without culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, the back face (i.e. face 3) is
        # rasterized.
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_f[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_f[..., 1].squeeze() == pix_to_face_backface))

        # With culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, there are no faces rasterized
        kwargs["cull_backfaces"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_t[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_t[..., 1].squeeze() == pix_to_face_padded))

facebook-github-bot's avatar
facebook-github-bot committed
532
533
534
535
536
537
538
539
540
541
542
543
544
    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=False,
    ):
        idx1, zbuf1, bary1, dist1 = fn1(*args1)
        idx2, zbuf2, bary2, dist2 = fn2(*args2)
        self.assertTrue((idx1.cpu() == idx2.cpu()).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
545
546
547
        self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4)
        self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3)
        self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
548
549
550
551
552
553
554
555
556
557
558
559
560
        if not compare_grads:
            return

        # Compare gradients.
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(zbuf1)
        grad_dist = torch.randn_like(dist1)
        grad_bary = torch.randn_like(bary1)
        loss1 = (
            (dist1 * grad_dist).sum()
            + (zbuf1 * grad_zbuf).sum()
            + (bary1 * grad_bary).sum()
        )
561
562
563
564

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss1 += grad_var1.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
565
566
567
568
569
570
571
572
573
574
575
        loss1.backward()
        grad_verts1 = grad_var1.grad.data.clone().cpu()

        grad_zbuf = grad_zbuf.to(zbuf2)
        grad_dist = grad_dist.to(dist2)
        grad_bary = grad_bary.to(bary2)
        loss2 = (
            (dist2 * grad_dist).sum()
            + (zbuf2 * grad_zbuf).sum()
            + (bary2 * grad_bary).sum()
        )
576
577
578
579

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss2 += grad_var2.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
580
581
582
        grad_var1.grad.data.zero_()
        loss2.backward()
        grad_verts2 = grad_var2.grad.data.clone().cpu()
583
        self.assertClose(grad_verts1, grad_verts2, rtol=2e-3)
facebook-github-bot's avatar
facebook-github-bot committed
584

585
    def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None):
facebook-github-bot's avatar
facebook-github-bot committed
586
587
        # fmt: off
        verts = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
588
589
590
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 11,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
607

facebook-github-bot's avatar
facebook-github-bot committed
608
609
610
        kwargs["perspective_correct"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

611
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
612
613
614
615
        # idx and dists should be the same with or without perspecitve correction
        # fmt: off
        idx_expected = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
616
617
618
619
            [-1, -1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
620
621
622
623
624
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
625
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
626
        ], dtype=torch.int64, device=device).view(1, 11, 11, 1)
627

facebook-github-bot's avatar
facebook-github-bot committed
628
        dists_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
629
630
631
632
633
634
635
636
637
638
639
            [-1.,     -1.,     -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1., 0.1402,  0.1071,  0.1402,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., -    1., 0.1523,  0.0542,  0.0212,  0.0542,  0.1523,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 0.0955,  0.0214, -0.0003,  0.0214,  0.0955,     -1.,   -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.1523,  0.0518,  0.0042, -0.0095,  0.0042,  0.0518, 0.1523,    -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.0955,  0.0214, -0.0003,  -0.032, -0.0003,  0.0214, 0.0955,    -1., -1.],  # noqa: E241, E201, B950
            [-1., 0.1523,  0.0518,  0.0042, -0.0095, -0.0476, -0.0095,  0.0042, 0.0518, 0.1523, -1.],  # noqa: E241, E201, B950
            [-1., 0.1084,  0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.],  # noqa: E241, E201, B950
            [-1., 0.1283,  0.0423,  0.0212,  0.0212,  0.0212,  0.0212,  0.0212, 0.0423, 0.1283, -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 0.1283,  0.1071,  0.1071,  0.1071,  0.1071,  0.1071, 0.1283,    -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1.,   -1., -1.]   # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
640
641
642
643
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)

        # zbuf and barycentric will be different with perspective correction
        zbuf_f_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
644
645
646
647
648
649
650
651
652
653
654
            [-1.,      -1.,     -1.,     -1.,     -1.,     -1.,      -1.,    -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1.,     -1., 24.0909, 24.0909, 24.0909,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,      15.,     15.,     15.,     15.,     15.,    15.,     15.,     -1., -1.],  # noqa: E241, E201, B950
            [-1., 12.7273,  12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.],  # noqa: E241, E201, B950
            [-1., 10.4545,  10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.],  # noqa: E241, E201, B950
            [-1.,  8.1818,   8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818, -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,       -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1., -1.],  # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
655
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
656

facebook-github-bot's avatar
facebook-github-bot committed
657
        zbuf_t_expected = torch.tensor([
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
658
659
660
661
662
663
664
665
666
667
668
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1.,     -1., 33.8461, 33.8462, 33.8462,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1.,     -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304,     -1.,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,     -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333,     -1., -1.],  # noqa: E241, E201, B950
            [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.],  # noqa: E241, E201, B950
            [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.],  # noqa: E241, E201, B950
            [-1.,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667, -1.],  # noqa: E241, E201, B950
            [-1.,      -1., 8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,     -1., -1.],  # noqa: E241, E201, B950
            [-1.,      -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.]   # noqa: E241, E201, B950
facebook-github-bot's avatar
facebook-github-bot committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
        # fmt: on

        self.assertTrue(torch.all(idx_f == idx_expected).item())
        self.assertTrue(torch.all(idx_t == idx_expected).item())
        dists_t_max_diff = (dists_t - dists_expected).abs().max().item()
        dists_f_max_diff = (dists_f - dists_expected).abs().max().item()
        self.assertLess(dists_t_max_diff, 1e-4)
        self.assertLess(dists_f_max_diff, 1e-4)
        zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item()
        zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item()
        self.assertLess(zbuf_f_max_diff, 1e-4)
        self.assertLess(zbuf_t_max_diff, 1e-4)

        # Check barycentrics by using them to re-compute zbuf
        z0 = verts[0, 2]
        z1 = verts[1, 2]
        z2 = verts[2, 2]
        w0_f, w1_f, w2_f = bary_f.unbind(dim=4)
        w0_t, w1_t, w2_t = bary_t.unbind(dim=4)
        zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2
        zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2
        mask = idx_expected != -1
692
693
        zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max()
        zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max()
facebook-github-bot's avatar
facebook-github-bot committed
694
695
696
        self.assertLess(zbuf_f_bary_diff, 1e-4)
        self.assertLess(zbuf_t_bary_diff, 1e-4)

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    def _test_barycentric_clipping(self, rasterize_meshes_fn, device, bin_size=None):
        # fmt: off
        verts = torch.tensor([
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 5,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
            "clip_barycentric_coords": False,  # Initially set this to false
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)

        # fmt: off
        expected_bary = torch.tensor([
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500, -0.2500,  1.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.5000,  0.5000,  1.0000],  # noqa: E241, E201
                [-0.0000, -0.0000,  1.0000],  # noqa: E241, E201
                [ 0.5000, -0.5000,  1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500,  0.7500,  0.5000],  # noqa: E241, E201
                [ 0.2500,  0.2500,  0.5000],  # noqa: E241, E201
                [ 0.7500, -0.2500,  0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-0.5000,  1.5000, -0.0000],  # noqa: E241, E201
                [-0.0000,  1.0000, -0.0000],  # noqa: E241, E201
                [ 0.5000,  0.5000, -0.0000],  # noqa: E241, E201
                [ 1.0000, -0.0000, -0.0000],  # noqa: E241, E201
                [ 1.5000, -0.5000,  0.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [ 0.2500,  1.2500, -0.5000],  # noqa: E241, E201
                [ 0.7500,  0.7500, -0.5000],  # noqa: E241, E201
                [ 1.2500,  0.2500, -0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ]
        ], dtype=torch.float32, device=device).view(1, 5, 5, 1, 3)
        # fmt: on

        self.assertClose(expected_bary, bary_f, atol=1e-4)

        # calculate the expected clipped barycentrics and zbuf
        expected_bary_clipped = _clip_barycentric_coordinates(expected_bary)
        expected_z_clipped = _interpolate_zbuf(idx_f, expected_bary_clipped, meshes)

        kwargs["clip_barycentric_coords"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

        self.assertClose(expected_bary_clipped, bary_t, atol=1e-4)
        self.assertClose(expected_z_clipped, zbuf_t, atol=1e-4)

facebook-github-bot's avatar
facebook-github-bot committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None):
        """
        All verts are behind the camera so nothing should get rasterized.
        """
        N = 1
        # fmt: off
        verts = torch.tensor(
            [
                [ -0.5, 0.0, -0.1],  # noqa: E241, E201
                [  0.0, 0.6, -0.1],  # noqa: E241, E201
                [  0.5, 0.0, -0.1],  # noqa: E241, E201
                [-0.25, 0.0, -0.9],  # noqa: E241, E201
                [ 0.25, 0.5, -0.9],  # noqa: E241, E201
                [ 0.75, 0.0, -0.9],  # noqa: E241, E201
                [ -0.4, 0.0, -0.5],  # noqa: E241, E201
                [  0.6, 0.6, -0.5],  # noqa: E241, E201
                [  0.8, 0.0, -0.5],  # noqa: E241, E201
                [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                [  0.3, 0.6, -0.5],  # noqa: E241, E201
                [  0.4, 0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
        faces = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        image_size = 16
        faces_per_pixel = 1
        radius = 0.2
        idx_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.int64,
            device=device,
        )
        bary_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel, 3),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        zbuf_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        dists_expected = zbuf_expected.clone()
        if bin_size == -1:
            # naive python version with no binning
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel
            )
        else:
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel, bin_size
            )
        idx_same = (idx == idx_expected).all().item()
        zbuf_same = (zbuf == zbuf_expected).all().item()
        self.assertTrue(idx_same)
        self.assertTrue(zbuf_same)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
839
840
        self.assertClose(bary, bary_expected)
        self.assertClose(dists, dists_expected)
facebook-github-bot's avatar
facebook-github-bot committed
841
842
843
844

    def _simple_triangle_raster(self, raster_fn, device, bin_size=None):
        image_size = 10

845
846
        # Mesh with a single non-symmetrical face - this will help
        # check that the XY directions are correctly oriented.
facebook-github-bot's avatar
facebook-github-bot committed
847
        verts0 = torch.tensor(
848
            [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]],
facebook-github-bot's avatar
facebook-github-bot committed
849
850
851
852
853
854
855
856
857
            dtype=torch.float32,
            device=device,
        )
        faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device)

        # Mesh with two overlapping faces.
        # fmt: off
        verts1 = torch.tensor(
            [
858
                [-0.9, -0.2, 0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
                [ 0.0,  0.6, 0.1],  # noqa: E241, E201
                [ 0.7, -0.4, 0.1],  # noqa: E241, E201
                [-0.7,  0.4, 0.5],  # noqa: E241, E201
                [ 0.0, -0.6, 0.5],  # noqa: E241, E201
                [ 0.7,  0.4, 0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt on
        faces1 = torch.tensor(
            [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device
        )

873
874
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
        # k = 0, closest point.
facebook-github-bot's avatar
facebook-github-bot committed
875
876
877
878
879
880
881
        # fmt off
        expected_p2face_k0 = torch.tensor(
            [
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
882
883
884
885
                    [-1, -1, -1, -1,  0, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  0,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
886
887
888
889
890
891
892
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
893
894
895
896
897
                    [-1, -1, -1, -1, -1,  1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  2,  2,  1,  1,  1,  2, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1,  1, -1],  # noqa: E241, E201
                    [-1, -1,  1,  1,  1,  2, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
898
899
900
901
902
903
904
905
906
907
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k0 = torch.tensor(
            [
Nikhila Ravi's avatar
Nikhila Ravi committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
                [
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1, 0.1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1]   # noqa: E241, E201
                ],
                [
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, 0.1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1],  # noqa: E241, E201
                    [-1, -1, 0.1, 0.1, 0.1, 0.5,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1]   # noqa: E241, E201
                ]
facebook-github-bot's avatar
facebook-github-bot committed
932
933
934
935
936
937
938
939
940
            ],
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1])

        # k = 1, second closest point.
        expected_p2face_k1 = expected_p2face_k0.clone()
941
        expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1
facebook-github-bot's avatar
facebook-github-bot committed
942
943
944

        # fmt: off
        expected_p2face_k1[1, :] = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
945
946
947
948
949
950
951
952
953
954
955
956
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
            ],
facebook-github-bot's avatar
facebook-github-bot committed
957
958
959
960
961
962
963
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k1 = expected_zbuf_k0.clone()
        expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1
        expected_zbuf_k1[1, :] = torch.tensor(
            [
964
965
966
967
968
969
970
971
972
973
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
974
975
976
977
978
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
979
980
981
982

        #  Coordinate conventions +Y up, +Z in, +X left
        if bin_size == -1:
            # simple python, no bin_size
983
            p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2)
984
985
986
987
988
        else:
            p2face, zbuf, bary, pix_dists = raster_fn(
                meshes, image_size, 0.0, 2, bin_size
            )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
989
990
991
992
        self.assertClose(p2face[..., 0], expected_p2face_k0)
        self.assertClose(zbuf[..., 0], expected_zbuf_k0)
        self.assertClose(p2face[..., 1], expected_p2face_k1)
        self.assertClose(zbuf[..., 1], expected_zbuf_k1)
facebook-github-bot's avatar
facebook-github-bot committed
993
994
995
996
997
998
999

    def _simple_blurry_raster(self, raster_fn, device, bin_size=None):
        """
        Check that pix_to_face, dist and zbuf values are invariant to the
        ordering of faces.
        """
        image_size = 10
1000
        blur_radius = 0.12**2
facebook-github-bot's avatar
facebook-github-bot committed
1001
1002
1003
1004
1005
        faces_per_pixel = 1

        # fmt: off
        verts = torch.tensor(
            [
1006
                [ -0.3, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1007
                [  0.0, 0.6,  0.1],  # noqa: E241, E201
1008
                [  0.8, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
                [-0.25, 0.0,  0.9],  # noqa: E241, E201
                [0.25,  0.5,  0.9],  # noqa: E241, E201
                [0.75,  0.0,  0.9],  # noqa: E241, E201
                [-0.4,  0.0,  0.5],  # noqa: E241, E201
                [ 0.6,  0.6,  0.5],  # noqa: E241, E201
                [ 0.8,  0.0,  0.5],  # noqa: E241, E201
                [-0.2,  0.0, -0.5],  # noqa: E241, E201  face behind the camera
                [ 0.3,  0.6, -0.5],  # noqa: E241, E201
                [ 0.4,  0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
1022
1023
        # Face with index 0 is non symmetric about the X and Y axis to
        # test that the positive Y and X directions are correct in the output.
facebook-github-bot's avatar
facebook-github-bot committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
        faces_packed = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        expected_p2f = torch.tensor(
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
1033
1034
1035
1036
                [-1,  2,  2,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  2,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf = torch.tensor(
            [
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.5,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.1,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on

        for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]):
            faces = faces_packed[order]  # rearrange order of faces.
            mesh = Meshes(verts=[verts], faces=[faces])
            if bin_size == -1:
1067
                # simple python, no bin size arg
facebook-github-bot's avatar
facebook-github-bot committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel
                )
            else:
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel, bin_size
                )
            if i == 0:
                expected_dists = dists
            p2f = expected_p2f.clone()
            p2f[expected_p2f == 0] = order.index(0)
            p2f[expected_p2f == 1] = order.index(1)
            p2f[expected_p2f == 2] = order.index(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1081
1082
1083
            self.assertClose(pix_to_face.squeeze(), p2f)
            self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5)
            self.assertClose(dists, expected_dists)
facebook-github-bot's avatar
facebook-github-bot committed
1084
1085

    def _test_coarse_rasterize(self, device):
1086
        image_size = (16, 16)
1087
1088
1089
        # No blurring. This test checks that the XY directions are
        # correctly oriented.
        blur_radius = 0.0
facebook-github-bot's avatar
facebook-github-bot committed
1090
1091
1092
1093
1094
1095
        bin_size = 8
        max_faces_per_bin = 3

        # fmt: off
        verts = torch.tensor(
            [
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
                [-0.5,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,   0.6,  0.1],  # noqa: E241, E201
                [-0.1,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.3,   0.5,  0.4],  # noqa: E241, E201
                [0.75,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.2,  -0.3,  0.9],  # noqa: E241, E201
                [ 0.3,  -0.7,  0.9],  # noqa: E241, E201
                [ 0.6,  -0.3,  0.9],  # noqa: E241, E201
                [-0.4,   0.0, -1.5],  # noqa: E241, E201
                [ 0.6,   0.6, -1.5],  # noqa: E241, E201
                [ 0.8,   0.0, -1.5],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1108
1109
1110
            ],
            device=device,
        )
1111
1112
        # Expected faces using axes convention +Y down, + X right, +Z in
        # Non symmetrical triangles i.e face 0 and 3 are in one bin only
facebook-github-bot's avatar
facebook-github-bot committed
1113
1114
        faces = torch.tensor(
            [
1115
1116
1117
                [ 1, 0,  2],  # noqa: E241, E201  bin 01 only
                [ 4, 3,  5],  # noqa: E241, E201  all bins
                [ 7, 6,  8],  # noqa: E241, E201  bin 10 only
facebook-github-bot's avatar
facebook-github-bot committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
                [10, 9, 11],  # noqa: E241, E201  negative z, should not appear.
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts], faces=[faces])
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()

1130
        # Expected faces using axes convention +Y down, + X right, + Z in
facebook-github-bot's avatar
facebook-github-bot committed
1131
        bin_faces_expected = (
1132
            torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1133
1134
            * -1
        )
1135
        bin_faces_expected[0, 1, 1, 0] = torch.tensor([1])
Nikhila Ravi's avatar
Nikhila Ravi committed
1136
1137
1138
        bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2])
        bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1])
        bin_faces_expected[0, 0, 0, 0] = torch.tensor([1])
1139
1140

        # +Y up, +X left, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
        bin_faces = _C._rasterize_meshes_coarse(
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
1150

1151
        bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all()
facebook-github-bot's avatar
facebook-github-bot committed
1152
1153
        self.assertTrue(bin_faces_same.item() == 1)

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    def test_order_of_ties(self):
        # Tied faces are rasterized in index order
        # We rasterize a mesh with many faces.
        device = torch.device("cuda:0")
        verts = -5 * torch.eye(3, dtype=torch.float32, device=device)[None]
        faces = torch.arange(3, device=device, dtype=torch.int64).expand(1, 100, 3)
        mesh = Meshes(verts=verts, faces=faces)

        R, T = look_at_view_transform(2.7, 0.0, 0.0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

        raster_settings = RasterizationSettings(
            image_size=28, faces_per_pixel=100, bin_size=0
        )
        rasterizer = MeshRasterizer(raster_settings=raster_settings)

        out = rasterizer(mesh, cameras=cameras)
        self.assertClose(
            out.pix_to_face[0, 14:, :14],
            torch.arange(100, device=device).expand(14, 14, 100),
        )

facebook-github-bot's avatar
facebook-github-bot committed
1176
1177
    @staticmethod
    def rasterize_meshes_python_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1178
1179
1180
1181
1182
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1183
1184
1185
1186
1187
1188
    ):
        device = torch.device("cpu")
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1189
1190
1191
            rasterize_meshes_python(
                meshes_batch, image_size, blur_radius, faces_per_pixel
            )
facebook-github-bot's avatar
facebook-github-bot committed
1192
1193
1194
1195
1196

        return rasterize

    @staticmethod
    def rasterize_meshes_cpu_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1197
1198
1199
1200
1201
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1202
1203
1204
1205
1206
    ):
        meshes = ico_sphere(ico_level, torch.device("cpu"))
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1207
1208
1209
1210
1211
1212
1213
            rasterize_meshes(
                meshes_batch,
                image_size,
                blur_radius,
                faces_per_pixel=faces_per_pixel,
                bin_size=0,
            )
facebook-github-bot's avatar
facebook-github-bot committed
1214
1215
1216
1217
1218
1219
1220
1221
1222

        return rasterize

    @staticmethod
    def rasterize_meshes_cuda_with_init(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
Nikhila Ravi's avatar
Nikhila Ravi committed
1223
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1224
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1225
1226
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
facebook-github-bot's avatar
facebook-github-bot committed
1227
        meshes_batch = meshes.extend(num_meshes)
Nikhila Ravi's avatar
Nikhila Ravi committed
1228
        torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1229
1230

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1231
1232
            rasterize_meshes(meshes_batch, image_size, blur_radius, faces_per_pixel)
            torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1233
1234

        return rasterize
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

    @staticmethod
    def bm_rasterize_meshes_with_clipping(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
        dist: float,
    ):
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        settings = RasterizationSettings(
            image_size=image_size,
            blur_radius=blur_radius,
            faces_per_pixel=faces_per_pixel,
            z_clip_value=1e-2,
            perspective_correct=True,
            cull_to_frustum=True,
        )

        # The camera is positioned so that the image plane intersects
        # the mesh and some faces are partially behind the image plane.
        R, T = look_at_view_transform(dist, 0, 0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
        rasterizer = MeshRasterizer(raster_settings=settings, cameras=cameras)

        # Transform the meshes to projec them onto the image plane
        meshes_screen = rasterizer.transform(meshes_batch)
        torch.cuda.synchronize(device)

        def rasterize():
            # Only measure rasterization speed (including clipping)
            rasterize_meshes(
                meshes_screen,
                image_size,
                blur_radius,
                faces_per_pixel,
                z_clip_value=1e-2,
                perspective_correct=True,
                cull_to_frustum=True,
            )
            torch.cuda.synchronize(device)

        return rasterize