test_rotation_conversions.py 7.31 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
facebook-github-bot's avatar
facebook-github-bot committed
2
3
4
5
6
7


import itertools
import math
import unittest

8
import torch
9
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
13
from pytorch3d.transforms.rotation_conversions import (
    euler_angles_to_matrix,
    matrix_to_euler_angles,
    matrix_to_quaternion,
14
    matrix_to_rotation_6d,
facebook-github-bot's avatar
facebook-github-bot committed
15
16
17
18
19
20
    quaternion_apply,
    quaternion_multiply,
    quaternion_to_matrix,
    random_quaternions,
    random_rotation,
    random_rotations,
21
    rotation_6d_to_matrix,
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
)


class TestRandomRotation(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    def test_random_rotation_invariant(self):
        """The image of the x-axis isn't biased among quadrants."""
        N = 1000
        base = random_rotation()
        quadrants = list(itertools.product([False, True], repeat=3))

        matrices = random_rotations(N)
        transformed = torch.matmul(base, matrices)
        transformed2 = torch.matmul(matrices, base)

        for k, results in enumerate([matrices, transformed, transformed2]):
            counts = {i: 0 for i in quadrants}
            for j in range(N):
                counts[tuple(i.item() > 0 for i in results[j, 0])] += 1
            average = N / 8.0
            counts_tensor = torch.tensor(list(counts.values()))
            chisquare_statistic = torch.sum(
                (counts_tensor - average) * (counts_tensor - average) / average
            )
            # The 0.1 significance level for chisquare(8-1) is
            # scipy.stats.chi2(7).ppf(0.9) == 12.017.
51
            self.assertLess(chisquare_statistic, 12, (counts, chisquare_statistic, k))
facebook-github-bot's avatar
facebook-github-bot committed
52
53


54
class TestRotationConversion(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    def test_from_quat(self):
        """quat -> mtx -> quat"""
        data = random_quaternions(13, dtype=torch.float64)
        mdata = matrix_to_quaternion(quaternion_to_matrix(data))
        self.assertTrue(torch.allclose(data, mdata))

    def test_to_quat(self):
        """mtx -> quat -> mtx"""
        data = random_rotations(13, dtype=torch.float64)
        mdata = quaternion_to_matrix(matrix_to_quaternion(data))
        self.assertTrue(torch.allclose(data, mdata))

    def test_quat_grad_exists(self):
        """Quaternion calculations are differentiable."""
        rotation = random_rotation(requires_grad=True)
        modified = quaternion_to_matrix(matrix_to_quaternion(rotation))
        [g] = torch.autograd.grad(modified.sum(), rotation)
        self.assertTrue(torch.isfinite(g).all())

    def _tait_bryan_conventions(self):
        return map("".join, itertools.permutations("XYZ"))

    def _proper_euler_conventions(self):
        letterpairs = itertools.permutations("XYZ", 2)
        return (l0 + l1 + l0 for l0, l1 in letterpairs)

    def _all_euler_angle_conventions(self):
        return itertools.chain(
            self._tait_bryan_conventions(), self._proper_euler_conventions()
        )

    def test_conventions(self):
        """The conventions listings have the right length."""
        all = list(self._all_euler_angle_conventions())
        self.assertEqual(len(all), 12)
        self.assertEqual(len(set(all)), 12)

    def test_from_euler(self):
        """euler -> mtx -> euler"""
        n_repetitions = 10
        # tolerance is how much we keep the middle angle away from the extreme
        # allowed values which make the calculation unstable (Gimbal lock).
        tolerance = 0.04
        half_pi = math.pi / 2
        data = torch.zeros(n_repetitions, 3)
        data.uniform_(-math.pi, math.pi)

        data[:, 1].uniform_(-half_pi + tolerance, half_pi - tolerance)
        for convention in self._tait_bryan_conventions():
            matrices = euler_angles_to_matrix(data, convention)
            mdata = matrix_to_euler_angles(matrices, convention)
            self.assertTrue(torch.allclose(data, mdata))

        data[:, 1] += half_pi
        for convention in self._proper_euler_conventions():
            matrices = euler_angles_to_matrix(data, convention)
            mdata = matrix_to_euler_angles(matrices, convention)
            self.assertTrue(torch.allclose(data, mdata))

    def test_to_euler(self):
        """mtx -> euler -> mtx"""
        data = random_rotations(13, dtype=torch.float64)
        for convention in self._all_euler_angle_conventions():
            euler_angles = matrix_to_euler_angles(data, convention)
            mdata = euler_angles_to_matrix(euler_angles, convention)
            self.assertTrue(torch.allclose(data, mdata))

    def test_euler_grad_exists(self):
        """Euler angle calculations are differentiable."""
        rotation = random_rotation(dtype=torch.float64, requires_grad=True)
        for convention in self._all_euler_angle_conventions():
            euler_angles = matrix_to_euler_angles(rotation, convention)
            mdata = euler_angles_to_matrix(euler_angles, convention)
            [g] = torch.autograd.grad(mdata.sum(), rotation)
            self.assertTrue(torch.isfinite(g).all())

    def test_quaternion_multiplication(self):
        """Quaternion and matrix multiplication are equivalent."""
        a = random_quaternions(15, torch.float64).reshape((3, 5, 4))
        b = random_quaternions(21, torch.float64).reshape((7, 3, 1, 4))
        ab = quaternion_multiply(a, b)
        self.assertEqual(ab.shape, (7, 3, 5, 4))
        a_matrix = quaternion_to_matrix(a)
        b_matrix = quaternion_to_matrix(b)
        ab_matrix = torch.matmul(a_matrix, b_matrix)
        ab_from_matrix = matrix_to_quaternion(ab_matrix)
        self.assertEqual(ab.shape, ab_from_matrix.shape)
        self.assertTrue(torch.allclose(ab, ab_from_matrix))

    def test_quaternion_application(self):
        """Applying a quaternion is the same as applying the matrix."""
        quaternions = random_quaternions(3, torch.float64, requires_grad=True)
        matrices = quaternion_to_matrix(quaternions)
        points = torch.randn(3, 3, dtype=torch.float64, requires_grad=True)
        transform1 = quaternion_apply(quaternions, points)
        transform2 = torch.matmul(matrices, points[..., None])[..., 0]
        self.assertTrue(torch.allclose(transform1, transform2))

        [p, q] = torch.autograd.grad(transform1.sum(), [points, quaternions])
        self.assertTrue(torch.isfinite(p).all())
        self.assertTrue(torch.isfinite(q).all())
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    def test_6d(self):
        """Converting to 6d and back"""
        r = random_rotations(13, dtype=torch.float64)

        # 6D representation is not unique,
        # but we implement it by taking the first two rows of the matrix
        r6d = matrix_to_rotation_6d(r)
        self.assertClose(r6d, r[:, :2, :].reshape(-1, 6))

        # going to 6D and back should not change the matrix
        r_hat = rotation_6d_to_matrix(r6d)
        self.assertClose(r_hat, r)

        # moving the second row R2 in the span of (R1, R2) should not matter
        r6d[:, 3:] += 2 * r6d[:, :3]
        r6d[:, :3] *= 3.0
        r_hat = rotation_6d_to_matrix(r6d)
        self.assertClose(r_hat, r)

        # check that we map anything to a valid rotation
        r6d = torch.rand(13, 6)
        r6d[:4, :] *= 3.0
        r6d[4:8, :] -= 0.5
        r = rotation_6d_to_matrix(r6d)
        self.assertClose(
            torch.matmul(r, r.permute(0, 2, 1)), torch.eye(3).expand_as(r), atol=1e-6
        )