"mmdet3d/vscode:/vscode.git/clone" did not exist on "907bb4e4d74de9e51cc1a65d88f15e08722d149b"
test_rotation_conversions.py 6.26 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
facebook-github-bot's avatar
facebook-github-bot committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


import itertools
import math
import unittest
import torch

from pytorch3d.transforms.rotation_conversions import (
    euler_angles_to_matrix,
    matrix_to_euler_angles,
    matrix_to_quaternion,
    quaternion_apply,
    quaternion_multiply,
    quaternion_to_matrix,
    random_quaternions,
    random_rotation,
    random_rotations,
)


class TestRandomRotation(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    def test_random_rotation_invariant(self):
        """The image of the x-axis isn't biased among quadrants."""
        N = 1000
        base = random_rotation()
        quadrants = list(itertools.product([False, True], repeat=3))

        matrices = random_rotations(N)
        transformed = torch.matmul(base, matrices)
        transformed2 = torch.matmul(matrices, base)

        for k, results in enumerate([matrices, transformed, transformed2]):
            counts = {i: 0 for i in quadrants}
            for j in range(N):
                counts[tuple(i.item() > 0 for i in results[j, 0])] += 1
            average = N / 8.0
            counts_tensor = torch.tensor(list(counts.values()))
            chisquare_statistic = torch.sum(
                (counts_tensor - average) * (counts_tensor - average) / average
            )
            # The 0.1 significance level for chisquare(8-1) is
            # scipy.stats.chi2(7).ppf(0.9) == 12.017.
            self.assertLess(
                chisquare_statistic, 12, (counts, chisquare_statistic, k)
            )


class TestRotationConversion(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    def test_from_quat(self):
        """quat -> mtx -> quat"""
        data = random_quaternions(13, dtype=torch.float64)
        mdata = matrix_to_quaternion(quaternion_to_matrix(data))
        self.assertTrue(torch.allclose(data, mdata))

    def test_to_quat(self):
        """mtx -> quat -> mtx"""
        data = random_rotations(13, dtype=torch.float64)
        mdata = quaternion_to_matrix(matrix_to_quaternion(data))
        self.assertTrue(torch.allclose(data, mdata))

    def test_quat_grad_exists(self):
        """Quaternion calculations are differentiable."""
        rotation = random_rotation(requires_grad=True)
        modified = quaternion_to_matrix(matrix_to_quaternion(rotation))
        [g] = torch.autograd.grad(modified.sum(), rotation)
        self.assertTrue(torch.isfinite(g).all())

    def _tait_bryan_conventions(self):
        return map("".join, itertools.permutations("XYZ"))

    def _proper_euler_conventions(self):
        letterpairs = itertools.permutations("XYZ", 2)
        return (l0 + l1 + l0 for l0, l1 in letterpairs)

    def _all_euler_angle_conventions(self):
        return itertools.chain(
            self._tait_bryan_conventions(), self._proper_euler_conventions()
        )

    def test_conventions(self):
        """The conventions listings have the right length."""
        all = list(self._all_euler_angle_conventions())
        self.assertEqual(len(all), 12)
        self.assertEqual(len(set(all)), 12)

    def test_from_euler(self):
        """euler -> mtx -> euler"""
        n_repetitions = 10
        # tolerance is how much we keep the middle angle away from the extreme
        # allowed values which make the calculation unstable (Gimbal lock).
        tolerance = 0.04
        half_pi = math.pi / 2
        data = torch.zeros(n_repetitions, 3)
        data.uniform_(-math.pi, math.pi)

        data[:, 1].uniform_(-half_pi + tolerance, half_pi - tolerance)
        for convention in self._tait_bryan_conventions():
            matrices = euler_angles_to_matrix(data, convention)
            mdata = matrix_to_euler_angles(matrices, convention)
            self.assertTrue(torch.allclose(data, mdata))

        data[:, 1] += half_pi
        for convention in self._proper_euler_conventions():
            matrices = euler_angles_to_matrix(data, convention)
            mdata = matrix_to_euler_angles(matrices, convention)
            self.assertTrue(torch.allclose(data, mdata))

    def test_to_euler(self):
        """mtx -> euler -> mtx"""
        data = random_rotations(13, dtype=torch.float64)
        for convention in self._all_euler_angle_conventions():
            euler_angles = matrix_to_euler_angles(data, convention)
            mdata = euler_angles_to_matrix(euler_angles, convention)
            self.assertTrue(torch.allclose(data, mdata))

    def test_euler_grad_exists(self):
        """Euler angle calculations are differentiable."""
        rotation = random_rotation(dtype=torch.float64, requires_grad=True)
        for convention in self._all_euler_angle_conventions():
            euler_angles = matrix_to_euler_angles(rotation, convention)
            mdata = euler_angles_to_matrix(euler_angles, convention)
            [g] = torch.autograd.grad(mdata.sum(), rotation)
            self.assertTrue(torch.isfinite(g).all())

    def test_quaternion_multiplication(self):
        """Quaternion and matrix multiplication are equivalent."""
        a = random_quaternions(15, torch.float64).reshape((3, 5, 4))
        b = random_quaternions(21, torch.float64).reshape((7, 3, 1, 4))
        ab = quaternion_multiply(a, b)
        self.assertEqual(ab.shape, (7, 3, 5, 4))
        a_matrix = quaternion_to_matrix(a)
        b_matrix = quaternion_to_matrix(b)
        ab_matrix = torch.matmul(a_matrix, b_matrix)
        ab_from_matrix = matrix_to_quaternion(ab_matrix)
        self.assertEqual(ab.shape, ab_from_matrix.shape)
        self.assertTrue(torch.allclose(ab, ab_from_matrix))

    def test_quaternion_application(self):
        """Applying a quaternion is the same as applying the matrix."""
        quaternions = random_quaternions(3, torch.float64, requires_grad=True)
        matrices = quaternion_to_matrix(quaternions)
        points = torch.randn(3, 3, dtype=torch.float64, requires_grad=True)
        transform1 = quaternion_apply(quaternions, points)
        transform2 = torch.matmul(matrices, points[..., None])[..., 0]
        self.assertTrue(torch.allclose(transform1, transform2))

        [p, q] = torch.autograd.grad(transform1.sum(), [points, quaternions])
        self.assertTrue(torch.isfinite(p).all())
        self.assertTrue(torch.isfinite(q).all())