test_chamfer.py 28 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
4
from collections import namedtuple
5

Nikhila Ravi's avatar
Nikhila Ravi committed
6
import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
7
8
import torch
import torch.nn.functional as F
Nikhila Ravi's avatar
Nikhila Ravi committed
9
from common_testing import TestCaseMixin, get_random_cuda_device
10
from pytorch3d.loss import chamfer_distance
Nikhila Ravi's avatar
Nikhila Ravi committed
11
12
13
14
15
16
17
from pytorch3d.structures.pointclouds import Pointclouds


# Output of init_pointclouds
points_normals = namedtuple(
    "points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
)
facebook-github-bot's avatar
facebook-github-bot committed
18

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
20

class TestChamfer(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
21
22
23
24
25
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
27
28
    def init_pointclouds(
        N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
29
30
31
32
33
34
        """
        Create 2 pointclouds object and associated padded points/normals tensors by
        starting from lists. The clouds and tensors have the same data. The
        leaf nodes for the clouds are a list of tensors. The padded tensor can be
        used directly as a leaf node.
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
35
36
37
        low = 0 if allow_empty else 1
        p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
        p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
38
39
        P1 = p1_lengths.max().item()
        P2 = p2_lengths.max().item()
Nikhila Ravi's avatar
Nikhila Ravi committed
40
41
42
        weights = torch.rand((N,), dtype=torch.float32, device=device)

        # list of points and normals tensors
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
43
44
45
46
47
48
49
        p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
        n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
        n1 /= n1.norm(dim=-1, p=2, keepdim=True)
        n2 /= n2.norm(dim=-1, p=2, keepdim=True)

Nikhila Ravi's avatar
Nikhila Ravi committed
50
51
52
53
54
55
56
        p1_list = []
        p2_list = []
        n1_list = []
        n2_list = []
        for i in range(N):
            l1 = p1_lengths[i]
            l2 = p2_lengths[i]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
58
59
60
            p1_list.append(p1[i, :l1].clone())
            p2_list.append(p2[i, :l2].clone())
            n1_list.append(n1[i, :l1].clone())
            n2_list.append(n2[i, :l2].clone())
Nikhila Ravi's avatar
Nikhila Ravi committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

        # Set requires_grad for all tensors in the lists and
        # padded tensors.
        if requires_grad:
            for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
                p.requires_grad = True

        # Create pointclouds objects
        cloud1 = Pointclouds(points=p1_list, normals=n1_list)
        cloud2 = Pointclouds(points=p2_list, normals=n2_list)

        # Return pointclouds objects and padded tensors
        return points_normals(
            p1_lengths=p1_lengths,
            p2_lengths=p2_lengths,
            cloud1=cloud1,
            cloud2=cloud2,
            p1=p1,
            p2=p2,
            n1=n1,
            n2=n2,
            weights=weights,
        )

facebook-github-bot's avatar
facebook-github-bot committed
85
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
86
    def chamfer_distance_naive_pointclouds(p1, p2, device="cpu"):
facebook-github-bot's avatar
facebook-github-bot committed
87
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
88
89
90
91
        Naive iterative implementation of nearest neighbor and chamfer distance.
        x and y are assumed to be pointclouds objects with points and optionally normals.
        This functions supports heterogeneous pointclouds in a batch.
        Returns lists of the unreduced loss and loss_normals.
facebook-github-bot's avatar
facebook-github-bot committed
92
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        x = p1.points_padded()
        y = p2.points_padded()
        N, P1, D = x.shape
        P2 = y.size(1)
        x_lengths = p1.num_points_per_cloud()
        y_lengths = p2.num_points_per_cloud()
        x_normals = p1.normals_padded()
        y_normals = p2.normals_padded()

        return_normals = x_normals is not None and y_normals is not None

        # Initialize all distances to + inf
        dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf

        x_mask = (
            torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
        )  # shape [N, P1]
        y_mask = (
            torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
        )  # shape [N, P2]

Nikhila Ravi's avatar
Nikhila Ravi committed
114
115
        is_x_heterogeneous = (x_lengths != P1).any()
        is_y_heterogeneous = (y_lengths != P2).any()
Nikhila Ravi's avatar
Nikhila Ravi committed
116
117
118
119
120
121
122
123
        # Only calculate the distances for the points which are not masked
        for n in range(N):
            for i1 in range(x_lengths[n]):
                for i2 in range(y_lengths[n]):
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)

        x_dist = torch.min(dist, dim=2)[0]  # (N, P1)
        y_dist = torch.min(dist, dim=1)[0]  # (N, P2)
facebook-github-bot's avatar
facebook-github-bot committed
124

Nikhila Ravi's avatar
Nikhila Ravi committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        if is_x_heterogeneous:
            x_dist[x_mask] = 0.0
        if is_y_heterogeneous:
            y_dist[y_mask] = 0.0

        loss = [x_dist, y_dist]

        lnorm = [x.new_zeros(()), x.new_zeros(())]

        if return_normals:
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
                )
            )

            if is_x_heterogeneous:
                lnorm1[x_mask] = 0.0
            if is_y_heterogeneous:
                lnorm2[y_mask] = 0.0

            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm
facebook-github-bot's avatar
facebook-github-bot committed
156
157

    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
158
    def chamfer_distance_naive(x, y, x_normals=None, y_normals=None):
facebook-github-bot's avatar
facebook-github-bot committed
159
160
        """
        Naive iterative implementation of nearest neighbor and chamfer distance.
Nikhila Ravi's avatar
Nikhila Ravi committed
161
162
        Returns lists of the unreduced loss and loss_normals. This naive
        version only supports homogeneous pointcouds in a batch.
facebook-github-bot's avatar
facebook-github-bot committed
163
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
164
165
        N, P1, D = x.shape
        P2 = y.size(1)
Nikhila Ravi's avatar
Nikhila Ravi committed
166
        device = x.device
Nikhila Ravi's avatar
Nikhila Ravi committed
167
        return_normals = x_normals is not None and y_normals is not None
facebook-github-bot's avatar
facebook-github-bot committed
168
169
170
171
172
        dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)

        for n in range(N):
            for i1 in range(P1):
                for i2 in range(P2):
Nikhila Ravi's avatar
Nikhila Ravi committed
173
                    dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
facebook-github-bot's avatar
facebook-github-bot committed
174
175
176
177
178

        loss = [
            torch.min(dist, dim=2)[0],  # (N, P1)
            torch.min(dist, dim=1)[0],  # (N, P2)
        ]
Nikhila Ravi's avatar
Nikhila Ravi committed
179
        lnorm = [x.new_zeros(()), x.new_zeros(())]
facebook-github-bot's avatar
facebook-github-bot committed
180
181

        if return_normals:
Nikhila Ravi's avatar
Nikhila Ravi committed
182
183
            x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
            y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
facebook-github-bot's avatar
facebook-github-bot committed
184
185
            lnorm1 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
186
                    x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
                )
            )
            lnorm2 = 1 - torch.abs(
                F.cosine_similarity(
Nikhila Ravi's avatar
Nikhila Ravi committed
191
                    y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
192
193
194
195
196
197
                )
            )
            lnorm = [lnorm1, lnorm2]  # [(N, P1), (N, P2)]

        return loss, lnorm

Nikhila Ravi's avatar
Nikhila Ravi committed
198
    def test_chamfer_point_batch_reduction_mean(self):
facebook-github-bot's avatar
facebook-github-bot committed
199
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
200
201
202
203
        Compare output of vectorized chamfer loss with naive implementation
        for the default settings (point_reduction = "mean" and batch_reduction = "mean")
        and no normals.
        This tests only uses homogeneous pointclouds.
facebook-github-bot's avatar
facebook-github-bot committed
204
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
205
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
206
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(p1, p2)

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(p11, p22, weights=weights)
facebook-github-bot's avatar
facebook-github-bot committed
222
223
224
        pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss *= weights
        pred_loss = pred_loss.sum() / weights.sum()
Nikhila Ravi's avatar
Nikhila Ravi committed
225

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
226
        self.assertClose(loss, pred_loss)
facebook-github-bot's avatar
facebook-github-bot committed
227
228
        self.assertTrue(loss_norm is None)

Nikhila Ravi's avatar
Nikhila Ravi committed
229
230
231
232
        # Check gradients
        self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)

    def test_chamfer_vs_naive_pointcloud(self):
facebook-github-bot's avatar
facebook-github-bot committed
233
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
234
235
236
237
        Test the default settings for chamfer_distance
        (point reduction = "mean" and batch_reduction="mean") but with heterogeneous
        pointclouds as input. Compare with the naive implementation of chamfer
        which supports heterogeneous pointcloud objects.
facebook-github-bot's avatar
facebook-github-bot committed
238
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
239
        N, max_P1, max_P2 = 3, 70, 70
Nikhila Ravi's avatar
Nikhila Ravi committed
240
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        weights = points_normals.weights
        x_lengths = points_normals.p1_lengths
        y_lengths = points_normals.p2_lengths

        # Chamfer with tensors as input for heterogeneous pointclouds.
        cham_tensor, norm_tensor = chamfer_distance(
            points_normals.p1,
            points_normals.p2,
            x_normals=points_normals.n1,
            y_normals=points_normals.n2,
            x_lengths=points_normals.p1_lengths,
            y_lengths=points_normals.p2_lengths,
            weights=weights,
facebook-github-bot's avatar
facebook-github-bot committed
255
256
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
257
258
        # Chamfer with pointclouds as input.
        pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
Nikhila Ravi's avatar
Nikhila Ravi committed
259
            points_normals.cloud1, points_normals.cloud2, device=device
Nikhila Ravi's avatar
Nikhila Ravi committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        )

        # Mean reduction point loss.
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_mean = (
            pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
        )
        pred_loss_mean = pred_loss_mean.sum()
        pred_loss_mean /= weights.sum()

        # Mean reduction norm loss.
        pred_norm_loss[0] *= weights.view(N, 1)
        pred_norm_loss[1] *= weights.view(N, 1)
        pred_norm_loss_mean = (
            pred_norm_loss[0].sum(1) / x_lengths + pred_norm_loss[1].sum(1) / y_lengths
        )
        pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()

        self.assertClose(pred_loss_mean, cham_tensor)
        self.assertClose(pred_norm_loss_mean, norm_tensor)

        self._check_gradients(
            cham_tensor,
            norm_tensor,
            pred_loss_mean,
            pred_norm_loss_mean,
            points_normals.cloud1.points_list(),
            points_normals.p1,
            points_normals.cloud2.points_list(),
            points_normals.p2,
            points_normals.cloud1.normals_list(),
            points_normals.n1,
            points_normals.cloud2.normals_list(),
            points_normals.n2,
            x_lengths,
            y_lengths,
        )

    def test_chamfer_pointcloud_object_withnormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
302
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
303
304
305
306
307
308
309
310
311
312
313
314
315

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
316
317
318
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

            # Chamfer with pointclouds as input.
            cham_cloud, norm_cloud = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, norm_tensor = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self.assertClose(norm_cloud, norm_tensor)
            self._check_gradients(
                cham_tensor,
                norm_tensor,
                cham_cloud,
                norm_cloud,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                points_normals.cloud1.normals_list(),
                points_normals.n1,
                points_normals.cloud2.normals_list(),
                points_normals.n2,
                points_normals.p1_lengths,
                points_normals.p2_lengths,
            )

    def test_chamfer_pointcloud_object_nonormals(self):
        N = 5
        P1, P2 = 100, 100
Nikhila Ravi's avatar
Nikhila Ravi committed
362
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
363
364
365
366
367
368
369
370
371
372
373
374
375

        reductions = [
            ("sum", "sum"),
            ("mean", "sum"),
            ("sum", "mean"),
            ("mean", "mean"),
            ("sum", None),
            ("mean", None),
        ]
        for (point_reduction, batch_reduction) in reductions:

            # Reinitialize all the tensors so that the
            # backward pass can be computed.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
376
377
378
            points_normals = TestChamfer.init_pointclouds(
                N, P1, P2, device, allow_empty=False
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

            # Chamfer with pointclouds as input.
            cham_cloud, _ = chamfer_distance(
                points_normals.cloud1,
                points_normals.cloud2,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            # Chamfer with tensors as input.
            cham_tensor, _ = chamfer_distance(
                points_normals.p1,
                points_normals.p2,
                x_lengths=points_normals.p1_lengths,
                y_lengths=points_normals.p2_lengths,
                point_reduction=point_reduction,
                batch_reduction=batch_reduction,
            )

            self.assertClose(cham_cloud, cham_tensor)
            self._check_gradients(
                cham_tensor,
                None,
                cham_cloud,
                None,
                points_normals.cloud1.points_list(),
                points_normals.p1,
                points_normals.cloud2.points_list(),
                points_normals.p2,
                lengths1=points_normals.p1_lengths,
                lengths2=points_normals.p2_lengths,
            )

    def test_chamfer_point_reduction_mean(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "mean" and batch_reduction = None.
        """
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
418
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
419
420
421
422
423
424
425
426
427
428
429
430
431
        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True
        P1 = p1.shape[1]
        P2 = p2.shape[1]

facebook-github-bot's avatar
facebook-github-bot committed
432
        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
433
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
434
435
436
437
        )

        # point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
438
439
440
441
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
442
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
443
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
444
445
446
447
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
448
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
449
450
451
452
453

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
454
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
455

Nikhila Ravi's avatar
Nikhila Ravi committed
456
457
458
459
460
461
462
463
464
465
466
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
        )

    def test_chamfer_point_reduction_sum(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
        for point_reduction = "sum" and batch_reduction = None.
        """
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
467
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights
        p11 = p1.detach().clone()
        p22 = p2.detach().clone()
        p11.requires_grad = True
        p22.requires_grad = True

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
        )

facebook-github-bot's avatar
facebook-github-bot committed
483
        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
484
485
486
487
            p11,
            p22,
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
488
            weights=weights,
Nikhila Ravi's avatar
Nikhila Ravi committed
489
            batch_reduction=None,
facebook-github-bot's avatar
facebook-github-bot committed
490
491
492
493
            point_reduction="sum",
        )
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
        pred_loss_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
494
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
495
496
497

        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
        pred_loss_norm_sum *= weights
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
498
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
499

Nikhila Ravi's avatar
Nikhila Ravi committed
500
501
502
503
        # Check gradients
        self._check_gradients(
            loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
        )
facebook-github-bot's avatar
facebook-github-bot committed
504

Nikhila Ravi's avatar
Nikhila Ravi committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    def _check_gradients(
        self,
        loss,
        loss_norm,
        pred_loss,
        pred_loss_norm,
        x1,
        x2,
        y1,
        y2,
        xn1=None,  # normals
        xn2=None,  # normals
        yn1=None,  # normals
        yn2=None,  # normals
        lengths1=None,
        lengths2=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
522
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
523
524
525
        x1 and x2 can have different types based on the leaf node used in the calculation:
        e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
        This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
facebook-github-bot's avatar
facebook-github-bot committed
526
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
527
        grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
facebook-github-bot's avatar
facebook-github-bot committed
528

Nikhila Ravi's avatar
Nikhila Ravi committed
529
530
531
532
533
534
535
536
        # Loss for normals is optional. Iniitalize to 0.
        norm_loss_term = pred_norm_loss_term = 0.0
        if loss_norm is not None and pred_loss_norm is not None:
            grad_normals = torch.rand(
                loss_norm.shape, device=loss.device, dtype=loss.dtype
            )
            norm_loss_term = loss_norm * grad_normals
            pred_norm_loss_term = pred_loss_norm * grad_normals
facebook-github-bot's avatar
facebook-github-bot committed
537

Nikhila Ravi's avatar
Nikhila Ravi committed
538
539
540
541
        l1 = (loss * grad_loss) + norm_loss_term
        l1.sum().backward()
        l2 = (pred_loss * grad_loss) + pred_norm_loss_term
        l2.sum().backward()
facebook-github-bot's avatar
facebook-github-bot committed
542

Nikhila Ravi's avatar
Nikhila Ravi committed
543
544
        self._check_grad_by_type(x1, x2, lengths1)
        self._check_grad_by_type(y1, y2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
545

Nikhila Ravi's avatar
Nikhila Ravi committed
546
547
548
549
        # If leaf nodes for normals are passed in, check their gradients.
        if all(n is not None for n in [xn1, xn2, yn1, yn2]):
            self._check_grad_by_type(xn1, xn2, lengths1)
            self._check_grad_by_type(yn1, yn2, lengths2)
facebook-github-bot's avatar
facebook-github-bot committed
550

Nikhila Ravi's avatar
Nikhila Ravi committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    def _check_grad_by_type(self, x1, x2, lengths=None):
        """
        x1 and x2 can be of different types e.g. list or tensor - compare appropriately
        based on the types.
        """
        error_msg = "All values for gradient checks must be tensors or lists of tensors"

        if all(isinstance(p, list) for p in [x1, x2]):
            # Lists of tensors
            for i in range(len(x1)):
                self.assertClose(x1[i].grad, x2[i].grad)
        elif isinstance(x1, list) and torch.is_tensor(x2):
            self.assertIsNotNone(lengths)  # lengths is required

            # List of tensors vs padded tensor
            for i in range(len(x1)):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
567
                self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
568
569
570
571
572
573
                self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
        elif all(torch.is_tensor(p) for p in [x1, x2]):
            # Two tensors
            self.assertClose(x1.grad, x2.grad)
        else:
            raise ValueError(error_msg)
facebook-github-bot's avatar
facebook-github-bot committed
574
575
576
577

    def test_chamfer_joint_reduction(self):
        """
        Compare output of vectorized chamfer loss with naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
578
        when batch_reduction in ["mean", "sum"] and
facebook-github-bot's avatar
facebook-github-bot committed
579
580
        point_reduction in ["mean", "sum"].
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
581
        N, max_P1, max_P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
582
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
583
584
585
586
587
588
589
590
591
592

        points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1
        p2_normals = points_normals.n2
        weights = points_normals.weights

        P1 = p1.shape[1]
        P2 = p2.shape[1]
facebook-github-bot's avatar
facebook-github-bot committed
593
594

        pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
595
            p1, p2, x_normals=p1_normals, y_normals=p2_normals
facebook-github-bot's avatar
facebook-github-bot committed
596
597
598
599
600
601
        )

        # batch_reduction = "sum", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
602
603
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
604
605
606
607
608
609
610
611
            weights=weights,
            batch_reduction="sum",
            point_reduction="sum",
        )
        pred_loss[0] *= weights.view(N, 1)
        pred_loss[1] *= weights.view(N, 1)
        pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)  # point sum
        pred_loss_sum = pred_loss_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
612
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
613
614
615
616
617
618
619

        pred_loss_norm[0] *= weights.view(N, 1)
        pred_loss_norm[1] *= weights.view(N, 1)
        pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
            1
        )  # point sum.
        pred_loss_norm_sum = pred_loss_norm_sum.sum()  # batch sum
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
620
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
621
622
623
624
625

        # batch_reduction = "mean", point_reduction = "sum".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
626
627
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
628
629
630
631
632
            weights=weights,
            batch_reduction="mean",
            point_reduction="sum",
        )
        pred_loss_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
633
        self.assertClose(loss, pred_loss_sum)
facebook-github-bot's avatar
facebook-github-bot committed
634
635

        pred_loss_norm_sum /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
636
        self.assertClose(loss_norm, pred_loss_norm_sum)
facebook-github-bot's avatar
facebook-github-bot committed
637
638
639
640
641

        # batch_reduction = "sum", point_reduction = "mean".
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
642
643
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
644
645
646
647
648
649
            weights=weights,
            batch_reduction="sum",
            point_reduction="mean",
        )
        pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
        pred_loss_mean = pred_loss_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
650
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
651
652
653
654
655

        pred_loss_norm_mean = (
            pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
        )
        pred_loss_norm_mean = pred_loss_norm_mean.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
656
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
657
658
659
660
661

        # batch_reduction = "mean", point_reduction = "mean". This is the default.
        loss, loss_norm = chamfer_distance(
            p1,
            p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
662
663
            x_normals=p1_normals,
            y_normals=p2_normals,
facebook-github-bot's avatar
facebook-github-bot committed
664
665
666
667
668
            weights=weights,
            batch_reduction="mean",
            point_reduction="mean",
        )
        pred_loss_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
669
        self.assertClose(loss, pred_loss_mean)
facebook-github-bot's avatar
facebook-github-bot committed
670
671

        pred_loss_norm_mean /= weights.sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
672
        self.assertClose(loss_norm, pred_loss_norm_mean)
facebook-github-bot's avatar
facebook-github-bot committed
673

Nikhila Ravi's avatar
Nikhila Ravi committed
674
675
676
677
678
679
680
681
        # Error when batch_reduction is not in ["mean", "sum"] or None.
        with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, batch_reduction="max")

        # Error when point_reduction is not in ["mean", "sum"].
        with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
            chamfer_distance(p1, p2, weights=weights, point_reduction=None)

facebook-github-bot's avatar
facebook-github-bot committed
682
683
    def test_incorrect_weights(self):
        N, P1, P2 = 16, 64, 128
Nikhila Ravi's avatar
Nikhila Ravi committed
684
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
685
686
687
688
689
690
691
692
693
694
695
        p1 = torch.rand(
            (N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
        )
        p2 = torch.rand(
            (N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
        )

        weights = torch.zeros((N,), dtype=torch.float32, device=device)
        loss, loss_norm = chamfer_distance(
            p1, p2, weights=weights, batch_reduction="mean"
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
696
        self.assertClose(loss.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
697
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
698
        self.assertClose(loss_norm.cpu(), torch.zeros(()))
facebook-github-bot's avatar
facebook-github-bot committed
699
700
701
        self.assertTrue(loss_norm.requires_grad)

        loss, loss_norm = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
702
            p1, p2, weights=weights, batch_reduction=None
facebook-github-bot's avatar
facebook-github-bot committed
703
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
704
        self.assertClose(loss.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
705
        self.assertTrue(loss.requires_grad)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
706
        self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
facebook-github-bot's avatar
facebook-github-bot committed
707
708
709
710
711
712
713
714
715
716
        self.assertTrue(loss_norm.requires_grad)

        weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

        weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
        with self.assertRaises(ValueError):
            loss, loss_norm = chamfer_distance(p1, p2, weights=weights)

Nikhila Ravi's avatar
Nikhila Ravi committed
717
718
    def test_incorrect_inputs(self):
        N, P1, P2 = 7, 10, 18
Nikhila Ravi's avatar
Nikhila Ravi committed
719
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
        points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
        p1 = points_normals.p1
        p2 = points_normals.p2
        p1_normals = points_normals.n1

        # Normals of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
            chamfer_distance(p1, p2, x_normals=p1_normals[None])

        # Points of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
            chamfer_distance(p1[None], p2)

        # Lengths of wrong shape
        with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
            chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))

        # Points are not a tensor or Pointclouds
        with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
            chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])

facebook-github-bot's avatar
facebook-github-bot committed
741
    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
742
    def chamfer_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
743
744
745
746
747
748
        batch_size: int,
        P1: int,
        P2: int,
        return_normals: bool,
        homogeneous: bool,
        device="cpu",
Nikhila Ravi's avatar
Nikhila Ravi committed
749
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
750
751
752
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
        l1 = points_normals.p1_lengths
        l2 = points_normals.p2_lengths
Nikhila Ravi's avatar
Nikhila Ravi committed
753
754
755
756
757
        if homogeneous:
            # Set lengths to None so in Chamfer it assumes
            # there is no padding.
            l1 = l2 = None

facebook-github-bot's avatar
facebook-github-bot committed
758
759
760
761
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = chamfer_distance(
Nikhila Ravi's avatar
Nikhila Ravi committed
762
763
                points_normals.p1,
                points_normals.p2,
Nikhila Ravi's avatar
Nikhila Ravi committed
764
765
                x_lengths=l1,
                y_lengths=l2,
Nikhila Ravi's avatar
Nikhila Ravi committed
766
767
768
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
                weights=points_normals.weights,
facebook-github-bot's avatar
facebook-github-bot committed
769
770
771
772
773
774
775
            )
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def chamfer_naive_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
776
        batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
facebook-github-bot's avatar
facebook-github-bot committed
777
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
778
        points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
779
780
781
782
        torch.cuda.synchronize()

        def loss():
            loss, loss_normals = TestChamfer.chamfer_distance_naive(
Nikhila Ravi's avatar
Nikhila Ravi committed
783
784
785
786
                points_normals.p1,
                points_normals.p2,
                x_normals=points_normals.n1,
                y_normals=points_normals.n2,
facebook-github-bot's avatar
facebook-github-bot committed
787
788
789
790
            )
            torch.cuda.synchronize()

        return loss