test_texturing.py 37.5 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
5

facebook-github-bot's avatar
facebook-github-bot committed
6
7
import torch
import torch.nn.functional as F
8
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
9
from pytorch3d.renderer.mesh.rasterizer import Fragments
Nikhila Ravi's avatar
Nikhila Ravi committed
10
11
12
13
14
from pytorch3d.renderer.mesh.textures import (
    TexturesAtlas,
    TexturesUV,
    TexturesVertex,
    _list_to_padded_wrapper,
15
    pack_rectangles,
Nikhila Ravi's avatar
Nikhila Ravi committed
16
17
)
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
from test_meshes import init_mesh
facebook-github-bot's avatar
facebook-github-bot committed
19
20


Nikhila Ravi's avatar
Nikhila Ravi committed
21
22
23
24
25
26
27
28
29
30
31
32
def tryindex(self, index, tex, meshes, source):
    tex2 = tex[index]
    meshes2 = meshes[index]
    tex_from_meshes = meshes2.textures
    for item in source:
        basic = source[item][index]
        from_texture = getattr(tex2, item + "_padded")()
        from_meshes = getattr(tex_from_meshes, item + "_padded")()
        if isinstance(index, int):
            basic = basic[None]

        if len(basic) == 0:
33
34
            self.assertEqual(len(from_texture), 0)
            self.assertEqual(len(from_meshes), 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        else:
            self.assertClose(basic, from_texture)
            self.assertClose(basic, from_meshes)
            self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
            item_list = getattr(tex_from_meshes, item + "_list")()
            self.assertEqual(basic.shape[0], len(item_list))
            for i, elem in enumerate(item_list):
                self.assertClose(elem, basic[i])


class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
    def test_sample_vertex_textures(self):
        """
        This tests both interpolate_vertex_colors as well as
        interpolate_face_attributes.
        """
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        # sample_textures calls interpolate_vertex_colors
        texels = mesh.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals[None, :]))

    def test_sample_vertex_textures_grad(self):
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
            dtype=torch.float32,
            requires_grad=True,
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        grad_vert_tex = torch.tensor(
            [[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
            dtype=torch.float32,
        )
        texels = mesh.sample_textures(fragments)
        texels.sum().backward()
        self.assertTrue(hasattr(vert_tex, "grad"))
        self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))

    def test_textures_vertex_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=torch.rand(size=(5, 10)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=(1, 1, 1))

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        verts = torch.randn((2, 4, 3), dtype=torch.float32, device=device)
        faces = torch.tensor(
            [[[2, 1, 0], [3, 1, 0]], [[1, 3, 0], [2, 1, 3]]],
            dtype=torch.int64,
            device=device,
        )

        # define TexturesVertex
        verts_texture = torch.rand(verts.shape)
        textures = TexturesVertex(verts_features=verts_texture)

        # compute packed faces
        ff = faces.unbind(0)
        faces_packed = torch.cat([ff[0], ff[1] + verts.shape[1]])

        # face verts textures
        faces_verts_texts = textures.faces_verts_textures_packed(faces_packed)

        verts_texts_packed = torch.cat(verts_texture.unbind(0))
        faces_verts_texts_packed = verts_texts_packed[faces_packed]

        self.assertClose(faces_verts_texts_packed, faces_verts_texts)

Nikhila Ravi's avatar
Nikhila Ravi committed
140
141
    def test_clone(self):
        tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
142
        tex.verts_features_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
143
144
145
146
        tex_cloned = tex.clone()
        self.assertSeparate(
            tex._verts_features_padded, tex_cloned._verts_features_padded
        )
147
        self.assertClose(tex._verts_features_padded, tex_cloned._verts_features_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
148
        self.assertSeparate(tex.valid, tex_cloned.valid)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )
            self.assertClose(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )

    def test_detach(self):
        tex = TexturesVertex(
            verts_features=torch.rand(size=(10, 100, 128), requires_grad=True)
        )
        tex.verts_features_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._verts_features_padded.requires_grad)
        self.assertClose(
            tex_detached._verts_features_padded, tex._verts_features_padded
        )
        for i in range(tex._N):
            self.assertClose(
                tex._verts_features_list[i], tex_detached._verts_features_list[i]
            )
            self.assertFalse(tex_detached._verts_features_list[i].requires_grad)
Nikhila Ravi's avatar
Nikhila Ravi committed
173
174
175

    def test_extend(self):
        B = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
176
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        V = mesh._V
        tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.verts_features_list()[i],
                    new_tex.verts_features_list()[i * N + n],
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [tex_init.verts_features_padded(), new_tex.verts_features_padded()]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        num_verts_per_mesh = [9, 6]
        D = 10
        verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
        verts_features_packed = list_to_packed(verts_features_list)[0]
        verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
        tex = TexturesVertex(verts_features=verts_features_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_verts_per_mesh = num_verts_per_mesh
        verts_packed = tex1.verts_features_packed()
        verts_verts_list = tex1.verts_features_list()
        verts_padded = tex1.verts_features_padded()

        for f1, f2 in zip(verts_verts_list, verts_features_list):
            self.assertTrue((f1 == f2).all().item())

        self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
        self.assertTrue(verts_padded.shape == (2, 9, D))

        # Case where num_verts_per_mesh is not set and textures
        # are initialized with a padded tensor.
        tex2 = TexturesVertex(verts_features=verts_padded)
        verts_packed = tex2.verts_features_packed()
        verts_list = tex2.verts_features_list()

        # Packed is just flattened padded as num_verts_per_mesh
        # has not been provided.
        self.assertTrue(verts_packed.shape == (9 * 2, D))

        for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
        source = {"verts_features": torch.randn(size=(N, 10, 128))}
        tex = TexturesVertex(verts_features=source["verts_features"])

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)


class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
    def test_sample_texture_atlas(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3))
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        )
        expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
        expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
        expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]

        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals))

    def test_textures_atlas_grad(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        grad_tex = torch.rand_like(texels)
        grad_expected = torch.zeros_like(faces_atlas)
        grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
        grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
        texels.backward(grad_tex)
        self.assertTrue(hasattr(faces_atlas, "grad"))
        self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))

    def test_textures_atlas_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=(1, 1, 1))

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        N, F, R = 2, 2, 8
        num_faces = torch.randint(low=1, high=F, size=(N,))
        faces_atlas = [
            torch.rand(size=(num_faces[i].item(), R, R, 3), device=device)
            for i in range(N)
        ]
        tex = TexturesAtlas(atlas=faces_atlas)

        # faces_verts naive
        faces_verts = []
        for n in range(N):
            ff = num_faces[n].item()
            temp = torch.zeros(ff, 3, 3)
            for f in range(ff):
                t0 = faces_atlas[n][f, 0, -1]  # for v0, bary = (1, 0)
                t1 = faces_atlas[n][f, -1, 0]  # for v1, bary = (0, 1)
                t2 = faces_atlas[n][f, 0, 0]  # for v2, bary = (0, 0)
                temp[f, 0] = t0
                temp[f, 1] = t1
                temp[f, 2] = t2
            faces_verts.append(temp)
        faces_verts = torch.cat(faces_verts, 0)

        self.assertClose(faces_verts, tex.faces_verts_textures_packed().cpu())

Nikhila Ravi's avatar
Nikhila Ravi committed
358
359
    def test_clone(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
360
        tex.atlas_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
361
362
        tex_cloned = tex.clone()
        self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
363
        self.assertClose(tex._atlas_padded, tex_cloned._atlas_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
364
        self.assertSeparate(tex.valid, tex_cloned.valid)
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._atlas_list[i], tex_cloned._atlas_list[i])
            self.assertClose(tex._atlas_list[i], tex_cloned._atlas_list[i])

    def test_detach(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3), requires_grad=True))
        tex.atlas_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._atlas_padded.requires_grad)
        self.assertClose(tex_detached._atlas_padded, tex._atlas_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._atlas_list[i].requires_grad)
            self.assertClose(tex._atlas_list[i], tex_detached._atlas_list[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
379
380
381

    def test_extend(self):
        B = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
382
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        F = mesh._F
        tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        R = 2
        N = 20
        num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
        atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
        tex = TexturesAtlas(atlas=atlas_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
        atlas_packed = tex1.atlas_packed()
        atlas_list_new = tex1.atlas_list()
        atlas_padded = tex1.atlas_padded()

        for f1, f2 in zip(atlas_list_new, atlas_list):
            self.assertTrue((f1 == f2).all().item())

        sum_F = num_faces_per_mesh.sum()
        max_F = num_faces_per_mesh.max().item()
        self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
        self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))

        # Case where num_faces_per_mesh is not set and textures
        # are initialized with a padded tensor.
        atlas_list_padded = _list_to_padded_wrapper(atlas_list)
        tex2 = TexturesAtlas(atlas=atlas_list_padded)
        atlas_packed = tex2.atlas_packed()
        atlas_list_new = tex2.atlas_list()

        # Packed is just flattened padded as num_faces_per_mesh
        # has not been provided.
        self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))

        for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
        source = {"atlas": torch.randn(size=(N, 10, 4, 4, 3))}
        tex = TexturesAtlas(atlas=source["atlas"])

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)


class TestTexturesUV(TestCaseMixin, unittest.TestCase):
474
475
476
477
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
478
    def test_sample_textures_uv(self):
facebook-github-bot's avatar
facebook-github-bot committed
479
480
481
482
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        dummy_verts = torch.zeros(4, 3)
483
        vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
facebook-github-bot's avatar
facebook-github-bot committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
        interpolated_uvs = torch.tensor(
            [[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
        )

        # Create a dummy texture map
        H = 2
        W = 2
        x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
        y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
        tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        for align_corners in [True, False]:
            tex = TexturesUV(
                maps=tex_map,
                faces_uvs=[face_uvs],
                verts_uvs=[vert_uvs],
                align_corners=align_corners,
            )
            meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
            mesh_textures = meshes.textures
            texels = mesh_textures.sample_textures(fragments)

            # Expected output
            pixel_uvs = interpolated_uvs * 2.0 - 1.0
            pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
            tex_map_ = torch.flip(tex_map, [1]).permute(0, 3, 1, 2)
            tex_map_ = torch.cat([tex_map_, tex_map_], dim=0)
            expected_out = F.grid_sample(
                tex_map_, pixel_uvs, align_corners=align_corners, padding_mode="border"
            )
            self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
facebook-github-bot's avatar
facebook-github-bot committed
523

Nikhila Ravi's avatar
Nikhila Ravi committed
524
    def test_textures_uv_init_fail(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
525
526
        # Maps has wrong shape
        with self.assertRaisesRegex(ValueError, "maps"):
Nikhila Ravi's avatar
Nikhila Ravi committed
527
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
528
                maps=torch.ones((5, 16, 16, 3, 4)),
Nikhila Ravi's avatar
Nikhila Ravi committed
529
530
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
531
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
532

Nikhila Ravi's avatar
Nikhila Ravi committed
533
534
        # faces_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "faces_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
535
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
536
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
537
538
                faces_uvs=torch.rand(size=(5, 10, 3, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
539
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
540

Nikhila Ravi's avatar
Nikhila Ravi committed
541
542
        # verts_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
543
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
544
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
545
546
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
547
548
            )

Nikhila Ravi's avatar
Nikhila Ravi committed
549
550
551
552
553
554
555
        # verts has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(8, 15, 2)),
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
556

Nikhila Ravi's avatar
Nikhila Ravi committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
        # maps has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "maps"):
            TexturesUV(
                maps=torch.ones((8, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

        # verts on different device to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
            )

        # maps on different device to faces
        with self.assertRaisesRegex(ValueError, "map"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3), device="cuda"),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        N, V, F, H, W = 2, 5, 12, 8, 8
        vert_uvs = torch.rand((N, V, 2), dtype=torch.float32, device=device)
        face_uvs = torch.randint(
            high=V, size=(N, F, 3), dtype=torch.int64, device=device
        )
        maps = torch.rand((N, H, W, 3), dtype=torch.float32, device=device)

        tex = TexturesUV(maps=maps, verts_uvs=vert_uvs, faces_uvs=face_uvs)

        # naive faces_verts_textures
        faces_verts_texs = []
        for n in range(N):
            temp = torch.zeros((F, 3, 3), device=device, dtype=torch.float32)
            for f in range(F):
                uv0 = vert_uvs[n, face_uvs[n, f, 0]]
                uv1 = vert_uvs[n, face_uvs[n, f, 1]]
                uv2 = vert_uvs[n, face_uvs[n, f, 2]]

                idx = torch.stack((uv0, uv1, uv2), dim=0).view(1, 1, 3, 2)  # 1x1x3x2
                idx = idx * 2.0 - 1.0
                imap = maps[n].view(1, H, W, 3).permute(0, 3, 1, 2)  # 1x3xHxW
                imap = torch.flip(imap, [2])

                texts = torch.nn.functional.grid_sample(
                    imap,
                    idx,
                    align_corners=tex.align_corners,
                    padding_mode=tex.padding_mode,
                )  # 1x3x1x3
                temp[f] = texts[0, :, 0, :].permute(1, 0)
            faces_verts_texs.append(temp)
        faces_verts_texs = torch.cat(faces_verts_texs, 0)

        self.assertClose(faces_verts_texs, tex.faces_verts_textures_packed())

Nikhila Ravi's avatar
Nikhila Ravi committed
618
619
620
621
622
623
    def test_clone(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
624
625
        tex.faces_uvs_list()
        tex.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
626
627
        tex_cloned = tex.clone()
        self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
628
        self.assertClose(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
629
        self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
630
        self.assertClose(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
631
        self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
632
        self.assertClose(tex._maps_padded, tex_cloned._maps_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
633
        self.assertSeparate(tex.valid, tex_cloned.valid)
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertClose(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertSeparate(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            self.assertClose(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertSeparate(tex.maps_list()[i], tex_cloned.maps_list()[i])
            self.assertClose(tex.maps_list()[i], tex_cloned.maps_list()[i])

    def test_detach(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3), requires_grad=True),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
        tex.faces_uvs_list()
        tex.verts_uvs_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._maps_padded.requires_grad)
        self.assertClose(tex._maps_padded, tex_detached._maps_padded)
        self.assertFalse(tex_detached._verts_uvs_padded.requires_grad)
        self.assertClose(tex._verts_uvs_padded, tex_detached._verts_uvs_padded)
        self.assertFalse(tex_detached._faces_uvs_padded.requires_grad)
        self.assertClose(tex._faces_uvs_padded, tex_detached._faces_uvs_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._verts_uvs_list[i].requires_grad)
            self.assertClose(tex._verts_uvs_list[i], tex_detached._verts_uvs_list[i])
            self.assertFalse(tex_detached._faces_uvs_list[i].requires_grad)
            self.assertClose(tex._faces_uvs_list[i], tex_detached._faces_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertFalse(tex_detached.maps_list()[i].requires_grad)
            self.assertClose(tex.maps_list()[i], tex_detached.maps_list()[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
667
668
669

    def test_extend(self):
        B = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
670
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
671
672
673
674
675
676
677
678
679
680
681
682
683
        V = mesh._V
        num_faces = mesh.num_faces_per_mesh()
        num_verts = mesh.num_verts_per_mesh()
        faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
        verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
        tex_uv = TexturesUV(
            maps=torch.ones((B, 16, 16, 3)),
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
        )
        tex_mesh = Meshes(
            verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
684
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
685
686
687
688
689
690
691
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

692
        new_tex_num_verts = new_mesh.num_verts_per_mesh()
Nikhila Ravi's avatar
Nikhila Ravi committed
693
694
        for i in range(len(tex_mesh)):
            for n in range(N):
695
                tex_nv = new_tex_num_verts[i * N + n]
Nikhila Ravi's avatar
Nikhila Ravi committed
696
                self.assertClose(
697
698
699
700
701
702
703
704
                    # The original textures were initialized using
                    # verts uvs list
                    tex_init.verts_uvs_list()[i],
                    # In the new textures, the verts_uvs are initialized
                    # from padded. The verts per mesh are not used to
                    # convert from padded to list. See TexturesUV for an
                    # explanation.
                    new_tex.verts_uvs_list()[i * N + n][:tex_nv, ...],
Nikhila Ravi's avatar
Nikhila Ravi committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                )
                self.assertClose(
                    tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
                )
                self.assertClose(
                    tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [
                tex_init.faces_uvs_padded(),
                new_tex.faces_uvs_padded(),
                tex_init.verts_uvs_padded(),
                new_tex.verts_uvs_padded(),
                tex_init.maps_padded(),
                new_tex.maps_padded(),
            ]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
732
733
734
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
Nikhila Ravi's avatar
Nikhila Ravi committed
735
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
736
737
738
739
740
        faces_uvs_list = [
            torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
            torch.tensor([[0, 1, 2], [3, 4, 5]]),
        ]  # (N, 3, 3)
        verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
Nikhila Ravi's avatar
Nikhila Ravi committed
741
742
743
744

        num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
        num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
        tex = TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
745
            maps=torch.ones((N, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
746
747
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
Nikhila Ravi's avatar
Nikhila Ravi committed
748
749
750
751
752
        )

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
Nikhila Ravi's avatar
Nikhila Ravi committed
753
754
        tex1._num_faces_per_mesh = num_faces_per_mesh
        tex1._num_verts_per_mesh = num_verts_per_mesh
Nikhila Ravi's avatar
Nikhila Ravi committed
755
        verts_list = tex1.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
756
        verts_padded = tex1.verts_uvs_padded()
Nikhila Ravi's avatar
Nikhila Ravi committed
757

Nikhila Ravi's avatar
Nikhila Ravi committed
758
759
760
761
        faces_list = tex1.faces_uvs_list()
        faces_padded = tex1.faces_uvs_padded()

        for f1, f2 in zip(faces_list, faces_uvs_list):
Nikhila Ravi's avatar
Nikhila Ravi committed
762
763
            self.assertTrue((f1 == f2).all().item())

Nikhila Ravi's avatar
Nikhila Ravi committed
764
765
        for f1, f2 in zip(verts_list, verts_uvs_list):
            self.assertTrue((f1 == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
766

Nikhila Ravi's avatar
Nikhila Ravi committed
767
768
        self.assertTrue(faces_padded.shape == (2, 3, 3))
        self.assertTrue(verts_padded.shape == (2, 9, 2))
Nikhila Ravi's avatar
Nikhila Ravi committed
769

Nikhila Ravi's avatar
Nikhila Ravi committed
770
771
772
773
774
775
776
        # Case where num_faces_per_mesh is not set and faces_verts_uvs
        # are initialized with a padded tensor.
        tex2 = TexturesUV(
            maps=torch.ones((N, 16, 16, 3)),
            verts_uvs=verts_padded,
            faces_uvs=faces_padded,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
777
778
779
        faces_list = tex2.faces_uvs_list()
        verts_list = tex2.verts_uvs_list()

Nikhila Ravi's avatar
Nikhila Ravi committed
780
781
782
        for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
783

Nikhila Ravi's avatar
Nikhila Ravi committed
784
785
786
        for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
787

Nikhila Ravi's avatar
Nikhila Ravi committed
788
789
    def test_to(self):
        tex = TexturesUV(
facebook-github-bot's avatar
facebook-github-bot committed
790
            maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
791
792
            faces_uvs=torch.randint(size=(5, 10, 3), high=15),
            verts_uvs=torch.rand(size=(5, 15, 2)),
facebook-github-bot's avatar
facebook-github-bot committed
793
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
794
795
        device = torch.device("cuda:0")
        tex = tex.to(device)
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        self.assertEqual(tex._faces_uvs_padded.device, device)
        self.assertEqual(tex._verts_uvs_padded.device, device)
        self.assertEqual(tex._maps_padded.device, device)

    def test_mesh_to(self):
        tex_cpu = TexturesUV(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.randint(size=(5, 10, 3), high=15),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
        verts = torch.rand(size=(5, 15, 3))
        faces = torch.randint(size=(5, 10, 3), high=15)
        mesh_cpu = Meshes(faces=faces, verts=verts, textures=tex_cpu)
        cpu = torch.device("cpu")
        device = torch.device("cuda:0")
        tex = mesh_cpu.to(device).textures
        self.assertEqual(tex._faces_uvs_padded.device, device)
        self.assertEqual(tex._verts_uvs_padded.device, device)
        self.assertEqual(tex._maps_padded.device, device)
        self.assertEqual(tex_cpu._verts_uvs_padded.device, cpu)

        self.assertEqual(tex_cpu.device, cpu)
        self.assertEqual(tex.device, device)
facebook-github-bot's avatar
facebook-github-bot committed
819

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
820
821
822
823
    def test_getitem(self):
        N = 5
        V = 20
        source = {
Nikhila Ravi's avatar
Nikhila Ravi committed
824
825
826
            "maps": torch.rand(size=(N, 1, 1, 3)),
            "faces_uvs": torch.randint(size=(N, 10, 3), high=V),
            "verts_uvs": torch.randn(size=(N, V, 2)),
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
827
        }
Nikhila Ravi's avatar
Nikhila Ravi committed
828
        tex = TexturesUV(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
829
830
831
832
833
834
835
836
837
            maps=source["maps"],
            faces_uvs=source["faces_uvs"],
            verts_uvs=source["verts_uvs"],
        )

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

Nikhila Ravi's avatar
Nikhila Ravi committed
838
839
        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
840
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
841
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
842
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
843
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
844
        index = torch.tensor([1, 2], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
845
846
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)
847

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
848
849
850
    def test_centers_for_image(self):
        maps = torch.rand(size=(1, 257, 129, 3))
        verts_uvs = torch.FloatTensor([[[0.25, 0.125], [0.5, 0.625], [0.5, 0.5]]])
851
852
853
        faces_uvs = torch.zeros(size=(1, 0, 3), dtype=torch.int64)
        tex = TexturesUV(maps=maps, faces_uvs=faces_uvs, verts_uvs=verts_uvs)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
854
855
        expected = torch.FloatTensor([[32, 224], [64, 96], [64, 128]])
        self.assertClose(tex.centers_for_image(0), expected)
856

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

class TestRectanglePacking(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

    def wrap_pack(self, sizes):
        """
        Call the pack_rectangles function, which we want to test,
        and return its outputs.
        Additionally makes some sanity checks on the output.
        """
        res = pack_rectangles(sizes)
        total = res.total_size
        self.assertGreaterEqual(total[0], 0)
        self.assertGreaterEqual(total[1], 0)
        mask = torch.zeros(total, dtype=torch.bool)
        seen_x_bound = False
        seen_y_bound = False
        for (in_x, in_y), loc in zip(sizes, res.locations):
            self.assertGreaterEqual(loc[0], 0)
            self.assertGreaterEqual(loc[1], 0)
            placed_x, placed_y = (in_y, in_x) if loc[2] else (in_x, in_y)
            upper_x = placed_x + loc[0]
            upper_y = placed_y + loc[1]
            self.assertGreaterEqual(total[0], upper_x)
            if total[0] == upper_x:
                seen_x_bound = True
            self.assertGreaterEqual(total[1], upper_y)
            if total[1] == upper_y:
                seen_y_bound = True
            already_taken = torch.sum(mask[loc[0] : upper_x, loc[1] : upper_y])
            self.assertEqual(already_taken, 0)
            mask[loc[0] : upper_x, loc[1] : upper_y] = 1
        self.assertTrue(seen_x_bound)
        self.assertTrue(seen_y_bound)

        self.assertTrue(torch.all(torch.sum(mask, dim=0, dtype=torch.int32) > 0))
        self.assertTrue(torch.all(torch.sum(mask, dim=1, dtype=torch.int32) > 0))
        return res

    def assert_bb(self, sizes, expected):
        """
        Apply the pack_rectangles function to sizes and verify the
        bounding box dimensions are expected.
        """
        self.assertSetEqual(set(self.wrap_pack(sizes).total_size), expected)

    def test_simple(self):
        self.assert_bb([(3, 4), (4, 3)], {6, 4})
        self.assert_bb([(2, 2), (2, 4), (2, 2)], {4, 4})

        # many squares
        self.assert_bb([(2, 2)] * 9, {2, 18})

        # One big square and many small ones.
        self.assert_bb([(3, 3)] + [(1, 1)] * 2, {3, 4})
        self.assert_bb([(3, 3)] + [(1, 1)] * 3, {3, 4})
        self.assert_bb([(3, 3)] + [(1, 1)] * 4, {3, 5})
        self.assert_bb([(3, 3)] + [(1, 1)] * 5, {3, 5})
        self.assert_bb([(1, 1)] * 6 + [(3, 3)], {3, 5})
        self.assert_bb([(3, 3)] + [(1, 1)] * 7, {3, 6})

        # many identical rectangles
        self.assert_bb([(7, 190)] * 4 + [(190, 7)] * 4, {190, 56})

        # require placing the flipped version of a rectangle
        self.assert_bb([(1, 100), (5, 96), (4, 5)], {100, 6})

    def test_random(self):
        for _ in range(5):
            vals = torch.randint(size=(20, 2), low=1, high=18)
            sizes = []
            for j in range(vals.shape[0]):
                sizes.append((int(vals[j, 0]), int(vals[j, 1])))
            self.wrap_pack(sizes)