"docs/source/en/using-diffusers/img2img.mdx" did not exist on "5a38033de4824c8d5d9b2856776df45592a8e825"
test_texturing.py 15.3 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
import torch
import torch.nn.functional as F

from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.mesh.texturing import (
    interpolate_face_attributes,
    interpolate_texture_map,
    interpolate_vertex_colors,
)
from pytorch3d.structures import Meshes, Textures
Nikhila Ravi's avatar
Nikhila Ravi committed
15
from pytorch3d.structures.utils import list_to_padded
facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

from common_testing import TestCaseMixin
from test_meshes import TestMeshes


class TestTexturing(TestCaseMixin, unittest.TestCase):
    def test_interpolate_attributes(self):
        """
        This tests both interpolate_vertex_colors as well as
        interpolate_face_attributes.
        """
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = interpolate_vertex_colors(fragments, mesh)
        self.assertTrue(torch.allclose(texels, expected_vals[None, :]))

    def test_interpolate_attributes_grad(self):
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
            dtype=torch.float32,
            requires_grad=True,
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        grad_vert_tex = torch.tensor(
            [
                [0.3, 0.3, 0.3],
                [0.9, 0.9, 0.9],
                [0.5, 0.5, 0.5],
                [0.3, 0.3, 0.3],
            ],
            dtype=torch.float32,
        )
        texels = interpolate_vertex_colors(fragments, mesh)
        texels.sum().backward()
        self.assertTrue(hasattr(vert_tex, "grad"))
        self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))

    def test_interpolate_face_attributes_fail(self):
        # 1. A face can only have 3 verts
        #   i.e. face_attributes must have shape (F, 3, D)
        face_attributes = torch.ones(1, 4, 3)
        pix_to_face = torch.ones((1, 1, 1, 1))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=pix_to_face[..., None].expand(-1, -1, -1, -1, 3),
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
        with self.assertRaises(ValueError):
96
97
98
            interpolate_face_attributes(
                fragments.pix_to_face, fragments.bary_coords, face_attributes
            )
facebook-github-bot's avatar
facebook-github-bot committed
99
100
101
102
103
104
105
106
107
108

        # 2. pix_to_face must have shape (N, H, W, K)
        pix_to_face = torch.ones((1, 1, 1, 1, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=pix_to_face,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
        with self.assertRaises(ValueError):
109
110
111
            interpolate_face_attributes(
                fragments.pix_to_face, fragments.bary_coords, face_attributes
            )
facebook-github-bot's avatar
facebook-github-bot committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

    def test_interpolate_texture_map(self):
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        dummy_verts = torch.zeros(4, 3)
        vert_uvs = torch.tensor(
            [[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32
        )
        face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
        interpolated_uvs = torch.tensor(
            [[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
        )

        # Create a dummy texture map
        H = 2
        W = 2
        x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
        y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
        tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
        tex = Textures(
            maps=tex_map,
            faces_uvs=face_uvs[None, ...],
            verts_uvs=vert_uvs[None, ...],
        )
        meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
        texels = interpolate_texture_map(fragments, meshes)

        # Expected output
        pixel_uvs = interpolated_uvs * 2.0 - 1.0
        pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
        tex_map = torch.flip(tex_map, [1])
        tex_map = tex_map.permute(0, 3, 1, 2)
        tex_map = torch.cat([tex_map, tex_map], dim=0)
        expected_out = F.grid_sample(tex_map, pixel_uvs, align_corners=False)
        self.assertTrue(
            torch.allclose(texels.squeeze(), expected_out.squeeze())
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    def test_init_rgb_uv_fail(self):
        V = 20
        # Maps has wrong shape
        with self.assertRaisesRegex(ValueError, "maps"):
            Textures(
                maps=torch.ones((5, 16, 16, 3, 4)),
                faces_uvs=torch.randint(size=(5, 10, 3), low=0, high=V),
                verts_uvs=torch.ones((5, V, 2)),
            )
        # faces_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "faces_uvs"):
            Textures(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.randint(size=(5, 10, 3, 3), low=0, high=V),
                verts_uvs=torch.ones((5, V, 2)),
            )
        # verts_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            Textures(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.randint(size=(5, 10, 3), low=0, high=V),
                verts_uvs=torch.ones((5, V, 2, 3)),
            )
        # verts_rgb has wrong shape
        with self.assertRaisesRegex(ValueError, "verts_rgb"):
            Textures(verts_rgb=torch.ones((5, 16, 16, 3)))

        # maps provided without verts/faces uvs
        with self.assertRaisesRegex(
            ValueError, "faces_uvs and verts_uvs are required"
        ):
            Textures(maps=torch.ones((5, 16, 16, 3)))

    def test_padded_to_packed(self):
        N = 2
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        faces_uvs_list = [
            torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
            torch.tensor([[0, 1, 2], [3, 4, 5]]),
        ]  # (N, 3, 3)
        verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
        faces_uvs_padded = list_to_padded(faces_uvs_list, pad_value=-1)
        verts_uvs_padded = list_to_padded(verts_uvs_list)
        tex = Textures(
            maps=torch.ones((N, 16, 16, 3)),
            faces_uvs=faces_uvs_padded,
            verts_uvs=verts_uvs_padded,
        )

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_faces_per_mesh = (
            faces_uvs_padded.gt(-1).all(-1).sum(-1).tolist()
        )
        tex1._num_verts_per_mesh = torch.tensor([5, 4])
        faces_packed = tex1.faces_uvs_packed()
        verts_packed = tex1.verts_uvs_packed()
        faces_list = tex1.faces_uvs_list()
        verts_list = tex1.verts_uvs_list()

        for f1, f2 in zip(faces_uvs_list, faces_list):
            self.assertTrue((f1 == f2).all().item())

        for f, v1, v2 in zip(faces_list, verts_list, verts_uvs_list):
            idx = f.unique()
            self.assertTrue((v1[idx] == v2).all().item())

        self.assertTrue(faces_packed.shape == (3 + 2, 3))

        # verts_packed is just flattened verts_padded.
        # split sizes are not used for verts_uvs.
        self.assertTrue(verts_packed.shape == (9 * 2, 2))

        # Case where num_faces_per_mesh is not set
        tex2 = tex.clone()
        faces_packed = tex2.faces_uvs_packed()
        verts_packed = tex2.verts_uvs_packed()
        faces_list = tex2.faces_uvs_list()
        verts_list = tex2.verts_uvs_list()

        # Packed is just flattened padded as num_faces_per_mesh
        # has not been provided.
        self.assertTrue(verts_packed.shape == (9 * 2, 2))
        self.assertTrue(faces_packed.shape == (3 * 2, 3))

        for i in range(N):
            self.assertTrue(
                (faces_list[i] == faces_uvs_padded[i, ...].squeeze())
                .all()
                .item()
            )

        for i in range(N):
            self.assertTrue(
                (verts_list[i] == verts_uvs_padded[i, ...].squeeze())
                .all()
                .item()
            )

facebook-github-bot's avatar
facebook-github-bot committed
260
261
262
263
264
265
266
267
268
269
270
271
    def test_clone(self):
        V = 20
        tex = Textures(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.randint(size=(5, 10, 3), low=0, high=V),
            verts_uvs=torch.ones((5, V, 2)),
        )
        tex_cloned = tex.clone()
        self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
        self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
        self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def test_getitem(self):
        N = 5
        V = 20
        source = {
            "maps": torch.rand(size=(N, 16, 16, 3)),
            "faces_uvs": torch.randint(size=(N, 10, 3), low=0, high=V),
            "verts_uvs": torch.rand((N, V, 2)),
        }
        tex = Textures(
            maps=source["maps"],
            faces_uvs=source["faces_uvs"],
            verts_uvs=source["verts_uvs"],
        )

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        def tryindex(index):
            tex2 = tex[index]
            meshes2 = meshes[index]
            tex_from_meshes = meshes2.textures
            for item in source:
                basic = source[item][index]
                from_texture = getattr(tex2, item + "_padded")()
                from_meshes = getattr(tex_from_meshes, item + "_padded")()
                if isinstance(index, int):
                    basic = basic[None]
                self.assertClose(basic, from_texture)
                self.assertClose(basic, from_meshes)
                self.assertEqual(
                    from_texture.ndim, getattr(tex, item + "_padded")().ndim
                )
                if item == "faces_uvs":
                    faces_uvs_list = tex_from_meshes.faces_uvs_list()
                    self.assertEqual(basic.shape[0], len(faces_uvs_list))
                    for i, faces_uvs in enumerate(faces_uvs_list):
                        self.assertClose(faces_uvs, basic[i])

        tryindex(2)
        tryindex(slice(0, 2, 1))
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(index)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(index)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(index)
        tryindex([2, 4])

facebook-github-bot's avatar
facebook-github-bot committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_to(self):
        V = 20
        tex = Textures(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.randint(size=(5, 10, 3), low=0, high=V),
            verts_uvs=torch.ones((5, V, 2)),
        )
        device = torch.device("cuda:0")
        tex = tex.to(device)
        self.assertTrue(tex._faces_uvs_padded.device == device)
        self.assertTrue(tex._verts_uvs_padded.device == device)
        self.assertTrue(tex._maps_padded.device == device)

    def test_extend(self):
        B = 10
        mesh = TestMeshes.init_mesh(B, 30, 50)
        V = mesh._V
        F = mesh._F
Nikhila Ravi's avatar
Nikhila Ravi committed
339
340
341

        # 1. Texture uvs
        tex_uv = Textures(
facebook-github-bot's avatar
facebook-github-bot committed
342
343
344
345
346
            maps=torch.randn((B, 16, 16, 3)),
            faces_uvs=torch.randint(size=(B, F, 3), low=0, high=V),
            verts_uvs=torch.randn((B, V, 2)),
        )
        tex_mesh = Meshes(
Nikhila Ravi's avatar
Nikhila Ravi committed
347
348
349
            verts=mesh.verts_padded(),
            faces=mesh.faces_padded(),
            textures=tex_uv,
facebook-github-bot's avatar
facebook-github-bot committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.faces_uvs_list()[i],
                    new_tex.faces_uvs_list()[i * N + n],
                )
                self.assertClose(
                    tex_init.verts_uvs_list()[i],
                    new_tex.verts_uvs_list()[i * N + n],
                )
        self.assertAllSeparate(
            [
                tex_init.faces_uvs_padded(),
                new_tex.faces_uvs_padded(),
                tex_init.verts_uvs_padded(),
                new_tex.verts_uvs_padded(),
                tex_init.maps_padded(),
                new_tex.maps_padded(),
            ]
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

        self.assertIsNone(new_tex.verts_rgb_list())
        self.assertIsNone(new_tex.verts_rgb_padded())
        self.assertIsNone(new_tex.verts_rgb_packed())

        # 2. Texture vertex RGB
        tex_rgb = Textures(verts_rgb=torch.randn((B, V, 3)))
        tex_mesh_rgb = Meshes(
            verts=mesh.verts_padded(),
            faces=mesh.faces_padded(),
            textures=tex_rgb,
        )
        N = 20
        new_mesh_rgb = tex_mesh_rgb.extend(N)

        self.assertEqual(len(tex_mesh_rgb) * N, len(new_mesh_rgb))

        tex_init = tex_mesh_rgb.textures
        new_tex = new_mesh_rgb.textures

        for i in range(len(tex_mesh_rgb)):
            for n in range(N):
                self.assertClose(
                    tex_init.verts_rgb_list()[i],
                    new_tex.verts_rgb_list()[i * N + n],
                )
        self.assertAllSeparate(
            [tex_init.verts_rgb_padded(), new_tex.verts_rgb_padded()]
        )

        self.assertIsNone(new_tex.verts_uvs_padded())
        self.assertIsNone(new_tex.verts_uvs_list())
        self.assertIsNone(new_tex.verts_uvs_packed())
        self.assertIsNone(new_tex.faces_uvs_padded())
        self.assertIsNone(new_tex.faces_uvs_list())
        self.assertIsNone(new_tex.faces_uvs_packed())

        # 3. Error
facebook-github-bot's avatar
facebook-github-bot committed
417
418
        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)