test_texturing.py 29.8 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
5

facebook-github-bot's avatar
facebook-github-bot committed
6
7
import torch
import torch.nn.functional as F
8
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
9
from pytorch3d.renderer.mesh.rasterizer import Fragments
Nikhila Ravi's avatar
Nikhila Ravi committed
10
11
12
13
14
15
16
from pytorch3d.renderer.mesh.textures import (
    TexturesAtlas,
    TexturesUV,
    TexturesVertex,
    _list_to_padded_wrapper,
)
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
facebook-github-bot's avatar
facebook-github-bot committed
17
18
19
from test_meshes import TestMeshes


Nikhila Ravi's avatar
Nikhila Ravi committed
20
21
22
23
24
25
26
27
28
29
30
31
def tryindex(self, index, tex, meshes, source):
    tex2 = tex[index]
    meshes2 = meshes[index]
    tex_from_meshes = meshes2.textures
    for item in source:
        basic = source[item][index]
        from_texture = getattr(tex2, item + "_padded")()
        from_meshes = getattr(tex_from_meshes, item + "_padded")()
        if isinstance(index, int):
            basic = basic[None]

        if len(basic) == 0:
32
33
            self.assertEqual(len(from_texture), 0)
            self.assertEqual(len(from_meshes), 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        else:
            self.assertClose(basic, from_texture)
            self.assertClose(basic, from_meshes)
            self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
            item_list = getattr(tex_from_meshes, item + "_list")()
            self.assertEqual(basic.shape[0], len(item_list))
            for i, elem in enumerate(item_list):
                self.assertClose(elem, basic[i])


class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
    def test_sample_vertex_textures(self):
        """
        This tests both interpolate_vertex_colors as well as
        interpolate_face_attributes.
        """
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        # sample_textures calls interpolate_vertex_colors
        texels = mesh.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals[None, :]))

    def test_sample_vertex_textures_grad(self):
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
            dtype=torch.float32,
            requires_grad=True,
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        grad_vert_tex = torch.tensor(
            [[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
            dtype=torch.float32,
        )
        texels = mesh.sample_textures(fragments)
        texels.sum().backward()
        self.assertTrue(hasattr(vert_tex, "grad"))
        self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))

    def test_textures_vertex_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=torch.rand(size=(5, 10)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=(1, 1, 1))

    def test_clone(self):
        tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
116
        tex.verts_features_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
117
118
119
120
        tex_cloned = tex.clone()
        self.assertSeparate(
            tex._verts_features_padded, tex_cloned._verts_features_padded
        )
121
        self.assertClose(tex._verts_features_padded, tex_cloned._verts_features_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
122
        self.assertSeparate(tex.valid, tex_cloned.valid)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )
            self.assertClose(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )

    def test_detach(self):
        tex = TexturesVertex(
            verts_features=torch.rand(size=(10, 100, 128), requires_grad=True)
        )
        tex.verts_features_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._verts_features_padded.requires_grad)
        self.assertClose(
            tex_detached._verts_features_padded, tex._verts_features_padded
        )
        for i in range(tex._N):
            self.assertClose(
                tex._verts_features_list[i], tex_detached._verts_features_list[i]
            )
            self.assertFalse(tex_detached._verts_features_list[i].requires_grad)
Nikhila Ravi's avatar
Nikhila Ravi committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    def test_extend(self):
        B = 10
        mesh = TestMeshes.init_mesh(B, 30, 50)
        V = mesh._V
        tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.verts_features_list()[i],
                    new_tex.verts_features_list()[i * N + n],
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [tex_init.verts_features_padded(), new_tex.verts_features_padded()]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        num_verts_per_mesh = [9, 6]
        D = 10
        verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
        verts_features_packed = list_to_packed(verts_features_list)[0]
        verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
        tex = TexturesVertex(verts_features=verts_features_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_verts_per_mesh = num_verts_per_mesh
        verts_packed = tex1.verts_features_packed()
        verts_verts_list = tex1.verts_features_list()
        verts_padded = tex1.verts_features_padded()

        for f1, f2 in zip(verts_verts_list, verts_features_list):
            self.assertTrue((f1 == f2).all().item())

        self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
        self.assertTrue(verts_padded.shape == (2, 9, D))

        # Case where num_verts_per_mesh is not set and textures
        # are initialized with a padded tensor.
        tex2 = TexturesVertex(verts_features=verts_padded)
        verts_packed = tex2.verts_features_packed()
        verts_list = tex2.verts_features_list()

        # Packed is just flattened padded as num_verts_per_mesh
        # has not been provided.
        self.assertTrue(verts_packed.shape == (9 * 2, D))

        for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
        source = {"verts_features": torch.randn(size=(N, 10, 128))}
        tex = TexturesVertex(verts_features=source["verts_features"])

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)


class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
    def test_sample_texture_atlas(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3))
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        )
        expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
        expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
        expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]

        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals))

    def test_textures_atlas_grad(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        grad_tex = torch.rand_like(texels)
        grad_expected = torch.zeros_like(faces_atlas)
        grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
        grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
        texels.backward(grad_tex)
        self.assertTrue(hasattr(faces_atlas, "grad"))
        self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))

    def test_textures_atlas_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=(1, 1, 1))

    def test_clone(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
307
        tex.atlas_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
308
309
        tex_cloned = tex.clone()
        self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
310
        self.assertClose(tex._atlas_padded, tex_cloned._atlas_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
311
        self.assertSeparate(tex.valid, tex_cloned.valid)
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._atlas_list[i], tex_cloned._atlas_list[i])
            self.assertClose(tex._atlas_list[i], tex_cloned._atlas_list[i])

    def test_detach(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3), requires_grad=True))
        tex.atlas_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._atlas_padded.requires_grad)
        self.assertClose(tex_detached._atlas_padded, tex._atlas_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._atlas_list[i].requires_grad)
            self.assertClose(tex._atlas_list[i], tex_detached._atlas_list[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

    def test_extend(self):
        B = 10
        mesh = TestMeshes.init_mesh(B, 30, 50)
        F = mesh._F
        tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        R = 2
        N = 20
        num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
        atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
        tex = TexturesAtlas(atlas=atlas_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
        atlas_packed = tex1.atlas_packed()
        atlas_list_new = tex1.atlas_list()
        atlas_padded = tex1.atlas_padded()

        for f1, f2 in zip(atlas_list_new, atlas_list):
            self.assertTrue((f1 == f2).all().item())

        sum_F = num_faces_per_mesh.sum()
        max_F = num_faces_per_mesh.max().item()
        self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
        self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))

        # Case where num_faces_per_mesh is not set and textures
        # are initialized with a padded tensor.
        atlas_list_padded = _list_to_padded_wrapper(atlas_list)
        tex2 = TexturesAtlas(atlas=atlas_list_padded)
        atlas_packed = tex2.atlas_packed()
        atlas_list_new = tex2.atlas_list()

        # Packed is just flattened padded as num_faces_per_mesh
        # has not been provided.
        self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))

        for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
        source = {"atlas": torch.randn(size=(N, 10, 4, 4, 3))}
        tex = TexturesAtlas(atlas=source["atlas"])

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)


class TestTexturesUV(TestCaseMixin, unittest.TestCase):
    def test_sample_textures_uv(self):
facebook-github-bot's avatar
facebook-github-bot committed
422
423
424
425
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        dummy_verts = torch.zeros(4, 3)
426
        vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
facebook-github-bot's avatar
facebook-github-bot committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
        interpolated_uvs = torch.tensor(
            [[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
        )

        # Create a dummy texture map
        H = 2
        W = 2
        x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
        y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
        tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        for align_corners in [True, False]:
            tex = TexturesUV(
                maps=tex_map,
                faces_uvs=[face_uvs],
                verts_uvs=[vert_uvs],
                align_corners=align_corners,
            )
            meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
            mesh_textures = meshes.textures
            texels = mesh_textures.sample_textures(fragments)

            # Expected output
            pixel_uvs = interpolated_uvs * 2.0 - 1.0
            pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
            tex_map_ = torch.flip(tex_map, [1]).permute(0, 3, 1, 2)
            tex_map_ = torch.cat([tex_map_, tex_map_], dim=0)
            expected_out = F.grid_sample(
                tex_map_, pixel_uvs, align_corners=align_corners, padding_mode="border"
            )
            self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
facebook-github-bot's avatar
facebook-github-bot committed
466

Nikhila Ravi's avatar
Nikhila Ravi committed
467
    def test_textures_uv_init_fail(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
468
469
        # Maps has wrong shape
        with self.assertRaisesRegex(ValueError, "maps"):
Nikhila Ravi's avatar
Nikhila Ravi committed
470
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
471
                maps=torch.ones((5, 16, 16, 3, 4)),
Nikhila Ravi's avatar
Nikhila Ravi committed
472
473
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
474
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
475

Nikhila Ravi's avatar
Nikhila Ravi committed
476
477
        # faces_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "faces_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
478
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
479
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
480
481
                faces_uvs=torch.rand(size=(5, 10, 3, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
482
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
483

Nikhila Ravi's avatar
Nikhila Ravi committed
484
485
        # verts_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
486
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
487
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
488
489
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
490
491
            )

Nikhila Ravi's avatar
Nikhila Ravi committed
492
493
494
495
496
497
498
        # verts has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(8, 15, 2)),
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
499

Nikhila Ravi's avatar
Nikhila Ravi committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        # maps has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "maps"):
            TexturesUV(
                maps=torch.ones((8, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

        # verts on different device to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
            )

        # maps on different device to faces
        with self.assertRaisesRegex(ValueError, "map"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3), device="cuda"),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

    def test_clone(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
530
531
        tex.faces_uvs_list()
        tex.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
532
533
        tex_cloned = tex.clone()
        self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
534
        self.assertClose(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
535
        self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
536
        self.assertClose(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
537
        self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
538
        self.assertClose(tex._maps_padded, tex_cloned._maps_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
539
        self.assertSeparate(tex.valid, tex_cloned.valid)
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertClose(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertSeparate(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            self.assertClose(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertSeparate(tex.maps_list()[i], tex_cloned.maps_list()[i])
            self.assertClose(tex.maps_list()[i], tex_cloned.maps_list()[i])

    def test_detach(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3), requires_grad=True),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
        tex.faces_uvs_list()
        tex.verts_uvs_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._maps_padded.requires_grad)
        self.assertClose(tex._maps_padded, tex_detached._maps_padded)
        self.assertFalse(tex_detached._verts_uvs_padded.requires_grad)
        self.assertClose(tex._verts_uvs_padded, tex_detached._verts_uvs_padded)
        self.assertFalse(tex_detached._faces_uvs_padded.requires_grad)
        self.assertClose(tex._faces_uvs_padded, tex_detached._faces_uvs_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._verts_uvs_list[i].requires_grad)
            self.assertClose(tex._verts_uvs_list[i], tex_detached._verts_uvs_list[i])
            self.assertFalse(tex_detached._faces_uvs_list[i].requires_grad)
            self.assertClose(tex._faces_uvs_list[i], tex_detached._faces_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertFalse(tex_detached.maps_list()[i].requires_grad)
            self.assertClose(tex.maps_list()[i], tex_detached.maps_list()[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

    def test_extend(self):
        B = 5
        mesh = TestMeshes.init_mesh(B, 30, 50)
        V = mesh._V
        num_faces = mesh.num_faces_per_mesh()
        num_verts = mesh.num_verts_per_mesh()
        faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
        verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
        tex_uv = TexturesUV(
            maps=torch.ones((B, 16, 16, 3)),
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
        )
        tex_mesh = Meshes(
            verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
590
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
591
592
593
594
595
596
597
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

598
        new_tex_num_verts = new_mesh.num_verts_per_mesh()
Nikhila Ravi's avatar
Nikhila Ravi committed
599
600
        for i in range(len(tex_mesh)):
            for n in range(N):
601
                tex_nv = new_tex_num_verts[i * N + n]
Nikhila Ravi's avatar
Nikhila Ravi committed
602
                self.assertClose(
603
604
605
606
607
608
609
610
                    # The original textures were initialized using
                    # verts uvs list
                    tex_init.verts_uvs_list()[i],
                    # In the new textures, the verts_uvs are initialized
                    # from padded. The verts per mesh are not used to
                    # convert from padded to list. See TexturesUV for an
                    # explanation.
                    new_tex.verts_uvs_list()[i * N + n][:tex_nv, ...],
Nikhila Ravi's avatar
Nikhila Ravi committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
                )
                self.assertClose(
                    tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
                )
                self.assertClose(
                    tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [
                tex_init.faces_uvs_padded(),
                new_tex.faces_uvs_padded(),
                tex_init.verts_uvs_padded(),
                new_tex.verts_uvs_padded(),
                tex_init.maps_padded(),
                new_tex.maps_padded(),
            ]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
638
639
640
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
Nikhila Ravi's avatar
Nikhila Ravi committed
641
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
642
643
644
645
646
        faces_uvs_list = [
            torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
            torch.tensor([[0, 1, 2], [3, 4, 5]]),
        ]  # (N, 3, 3)
        verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
Nikhila Ravi's avatar
Nikhila Ravi committed
647
648
649
650

        num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
        num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
        tex = TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
651
            maps=torch.ones((N, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
652
653
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
Nikhila Ravi's avatar
Nikhila Ravi committed
654
655
656
657
658
        )

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
Nikhila Ravi's avatar
Nikhila Ravi committed
659
660
        tex1._num_faces_per_mesh = num_faces_per_mesh
        tex1._num_verts_per_mesh = num_verts_per_mesh
Nikhila Ravi's avatar
Nikhila Ravi committed
661
        verts_list = tex1.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
662
        verts_padded = tex1.verts_uvs_padded()
Nikhila Ravi's avatar
Nikhila Ravi committed
663

Nikhila Ravi's avatar
Nikhila Ravi committed
664
665
666
667
        faces_list = tex1.faces_uvs_list()
        faces_padded = tex1.faces_uvs_padded()

        for f1, f2 in zip(faces_list, faces_uvs_list):
Nikhila Ravi's avatar
Nikhila Ravi committed
668
669
            self.assertTrue((f1 == f2).all().item())

Nikhila Ravi's avatar
Nikhila Ravi committed
670
671
        for f1, f2 in zip(verts_list, verts_uvs_list):
            self.assertTrue((f1 == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
672

Nikhila Ravi's avatar
Nikhila Ravi committed
673
674
        self.assertTrue(faces_padded.shape == (2, 3, 3))
        self.assertTrue(verts_padded.shape == (2, 9, 2))
Nikhila Ravi's avatar
Nikhila Ravi committed
675

Nikhila Ravi's avatar
Nikhila Ravi committed
676
677
678
679
680
681
682
        # Case where num_faces_per_mesh is not set and faces_verts_uvs
        # are initialized with a padded tensor.
        tex2 = TexturesUV(
            maps=torch.ones((N, 16, 16, 3)),
            verts_uvs=verts_padded,
            faces_uvs=faces_padded,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
683
684
685
        faces_list = tex2.faces_uvs_list()
        verts_list = tex2.verts_uvs_list()

Nikhila Ravi's avatar
Nikhila Ravi committed
686
687
688
        for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
689

Nikhila Ravi's avatar
Nikhila Ravi committed
690
691
692
        for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
693

Nikhila Ravi's avatar
Nikhila Ravi committed
694
695
    def test_to(self):
        tex = TexturesUV(
facebook-github-bot's avatar
facebook-github-bot committed
696
            maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
697
698
            faces_uvs=torch.randint(size=(5, 10, 3), high=15),
            verts_uvs=torch.rand(size=(5, 15, 2)),
facebook-github-bot's avatar
facebook-github-bot committed
699
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
700
701
702
703
704
        device = torch.device("cuda:0")
        tex = tex.to(device)
        self.assertTrue(tex._faces_uvs_padded.device == device)
        self.assertTrue(tex._verts_uvs_padded.device == device)
        self.assertTrue(tex._maps_padded.device == device)
facebook-github-bot's avatar
facebook-github-bot committed
705

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
706
707
708
709
    def test_getitem(self):
        N = 5
        V = 20
        source = {
Nikhila Ravi's avatar
Nikhila Ravi committed
710
711
712
            "maps": torch.rand(size=(N, 1, 1, 3)),
            "faces_uvs": torch.randint(size=(N, 10, 3), high=V),
            "verts_uvs": torch.randn(size=(N, V, 2)),
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
713
        }
Nikhila Ravi's avatar
Nikhila Ravi committed
714
        tex = TexturesUV(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
715
716
717
718
719
720
721
722
723
            maps=source["maps"],
            faces_uvs=source["faces_uvs"],
            verts_uvs=source["verts_uvs"],
        )

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

Nikhila Ravi's avatar
Nikhila Ravi committed
724
725
        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
726
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
727
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
728
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
729
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
730
        index = torch.tensor([1, 2], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
731
732
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)