test_texturing.py 42.4 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8


import unittest
9

facebook-github-bot's avatar
facebook-github-bot committed
10
11
import torch
import torch.nn.functional as F
12
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
13
from pytorch3d.renderer.mesh.rasterizer import Fragments
Nikhila Ravi's avatar
Nikhila Ravi committed
14
15
16
17
18
from pytorch3d.renderer.mesh.textures import (
    TexturesAtlas,
    TexturesUV,
    TexturesVertex,
    _list_to_padded_wrapper,
19
20
21
)
from pytorch3d.renderer.mesh.utils import (
    Rectangle,
22
    pack_rectangles,
23
    pack_unique_rectangles,
Nikhila Ravi's avatar
Nikhila Ravi committed
24
25
)
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
from test_meshes import init_mesh
facebook-github-bot's avatar
facebook-github-bot committed
27
28


Nikhila Ravi's avatar
Nikhila Ravi committed
29
30
31
32
33
34
35
36
37
38
39
40
def tryindex(self, index, tex, meshes, source):
    tex2 = tex[index]
    meshes2 = meshes[index]
    tex_from_meshes = meshes2.textures
    for item in source:
        basic = source[item][index]
        from_texture = getattr(tex2, item + "_padded")()
        from_meshes = getattr(tex_from_meshes, item + "_padded")()
        if isinstance(index, int):
            basic = basic[None]

        if len(basic) == 0:
41
42
            self.assertEqual(len(from_texture), 0)
            self.assertEqual(len(from_meshes), 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        else:
            self.assertClose(basic, from_texture)
            self.assertClose(basic, from_meshes)
            self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
            item_list = getattr(tex_from_meshes, item + "_list")()
            self.assertEqual(basic.shape[0], len(item_list))
            for i, elem in enumerate(item_list):
                self.assertClose(elem, basic[i])


class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
    def test_sample_vertex_textures(self):
        """
        This tests both interpolate_vertex_colors as well as
        interpolate_face_attributes.
        """
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        # sample_textures calls interpolate_vertex_colors
        texels = mesh.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals[None, :]))

    def test_sample_vertex_textures_grad(self):
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
            dtype=torch.float32,
            requires_grad=True,
        )
        verts_features = vert_tex
        tex = TexturesVertex(verts_features=[verts_features])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        grad_vert_tex = torch.tensor(
            [[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
            dtype=torch.float32,
        )
        texels = mesh.sample_textures(fragments)
        texels.sum().backward()
        self.assertTrue(hasattr(vert_tex, "grad"))
        self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))

    def test_textures_vertex_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=torch.rand(size=(5, 10)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "verts_features"):
            TexturesVertex(verts_features=(1, 1, 1))

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        verts = torch.randn((2, 4, 3), dtype=torch.float32, device=device)
        faces = torch.tensor(
            [[[2, 1, 0], [3, 1, 0]], [[1, 3, 0], [2, 1, 3]]],
            dtype=torch.int64,
            device=device,
        )

        # define TexturesVertex
        verts_texture = torch.rand(verts.shape)
        textures = TexturesVertex(verts_features=verts_texture)

        # compute packed faces
        ff = faces.unbind(0)
        faces_packed = torch.cat([ff[0], ff[1] + verts.shape[1]])

        # face verts textures
        faces_verts_texts = textures.faces_verts_textures_packed(faces_packed)

        verts_texts_packed = torch.cat(verts_texture.unbind(0))
        faces_verts_texts_packed = verts_texts_packed[faces_packed]

        self.assertClose(faces_verts_texts_packed, faces_verts_texts)

Nikhila Ravi's avatar
Nikhila Ravi committed
148
149
    def test_clone(self):
        tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
150
        tex.verts_features_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
151
152
153
154
        tex_cloned = tex.clone()
        self.assertSeparate(
            tex._verts_features_padded, tex_cloned._verts_features_padded
        )
155
        self.assertClose(tex._verts_features_padded, tex_cloned._verts_features_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
156
        self.assertSeparate(tex.valid, tex_cloned.valid)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )
            self.assertClose(
                tex._verts_features_list[i], tex_cloned._verts_features_list[i]
            )

    def test_detach(self):
        tex = TexturesVertex(
            verts_features=torch.rand(size=(10, 100, 128), requires_grad=True)
        )
        tex.verts_features_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._verts_features_padded.requires_grad)
        self.assertClose(
            tex_detached._verts_features_padded, tex._verts_features_padded
        )
        for i in range(tex._N):
            self.assertClose(
                tex._verts_features_list[i], tex_detached._verts_features_list[i]
            )
            self.assertFalse(tex_detached._verts_features_list[i].requires_grad)
Nikhila Ravi's avatar
Nikhila Ravi committed
181
182
183

    def test_extend(self):
        B = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
184
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        V = mesh._V
        tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.verts_features_list()[i],
                    new_tex.verts_features_list()[i * N + n],
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [tex_init.verts_features_padded(), new_tex.verts_features_padded()]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        num_verts_per_mesh = [9, 6]
        D = 10
        verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
        verts_features_packed = list_to_packed(verts_features_list)[0]
        verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
        tex = TexturesVertex(verts_features=verts_features_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_verts_per_mesh = num_verts_per_mesh
        verts_packed = tex1.verts_features_packed()
        verts_verts_list = tex1.verts_features_list()
        verts_padded = tex1.verts_features_padded()

        for f1, f2 in zip(verts_verts_list, verts_features_list):
            self.assertTrue((f1 == f2).all().item())

        self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
        self.assertTrue(verts_padded.shape == (2, 9, D))

        # Case where num_verts_per_mesh is not set and textures
        # are initialized with a padded tensor.
        tex2 = TexturesVertex(verts_features=verts_padded)
        verts_packed = tex2.verts_features_packed()
        verts_list = tex2.verts_features_list()

        # Packed is just flattened padded as num_verts_per_mesh
        # has not been provided.
        self.assertTrue(verts_packed.shape == (9 * 2, D))

        for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
Nikhila Ravi's avatar
Nikhila Ravi committed
258
        source = {"verts_features": torch.randn(size=(N, V, 128))}
Nikhila Ravi's avatar
Nikhila Ravi committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        tex = TexturesVertex(verts_features=source["verts_features"])

        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)

Nikhila Ravi's avatar
Nikhila Ravi committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def test_sample_textures_error(self):
        N = 5
        V = 20
        verts = torch.rand(size=(N, V, 3))
        faces = torch.randint(size=(N, 10, 3), high=V)
        tex = TexturesVertex(verts_features=torch.randn(size=(N, 10, 128)))

        # Verts features have the wrong number of verts
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        # Verts features have the wrong batch dim
        tex = TexturesVertex(verts_features=torch.randn(size=(1, V, 128)))
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        meshes = Meshes(verts=verts, faces=faces)
        meshes.textures = tex

        # Cannot use the texture attribute set on meshes for sampling
        # textures if the dimensions don't match
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            meshes.sample_textures(None)

Nikhila Ravi's avatar
Nikhila Ravi committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
    def test_sample_texture_atlas(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3))
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        )
        expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
        expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
        expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]

        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        self.assertTrue(torch.allclose(texels, expected_vals))

    def test_textures_atlas_grad(self):
        N, F, R = 1, 2, 2
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
        tex = TexturesAtlas(atlas=faces_atlas)
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = mesh.textures.sample_textures(fragments)
        grad_tex = torch.rand_like(texels)
        grad_expected = torch.zeros_like(faces_atlas)
        grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
        grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
        texels.backward(grad_tex)
        self.assertTrue(hasattr(faces_atlas, "grad"))
        self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))

    def test_textures_atlas_init_fail(self):
        # Incorrect sized tensors
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))

        # Not a list or a tensor
        with self.assertRaisesRegex(ValueError, "atlas"):
            TexturesAtlas(atlas=(1, 1, 1))

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        N, F, R = 2, 2, 8
        num_faces = torch.randint(low=1, high=F, size=(N,))
        faces_atlas = [
            torch.rand(size=(num_faces[i].item(), R, R, 3), device=device)
            for i in range(N)
        ]
        tex = TexturesAtlas(atlas=faces_atlas)

        # faces_verts naive
        faces_verts = []
        for n in range(N):
            ff = num_faces[n].item()
            temp = torch.zeros(ff, 3, 3)
            for f in range(ff):
                t0 = faces_atlas[n][f, 0, -1]  # for v0, bary = (1, 0)
                t1 = faces_atlas[n][f, -1, 0]  # for v1, bary = (0, 1)
                t2 = faces_atlas[n][f, 0, 0]  # for v2, bary = (0, 0)
                temp[f, 0] = t0
                temp[f, 1] = t1
                temp[f, 2] = t2
            faces_verts.append(temp)
        faces_verts = torch.cat(faces_verts, 0)

        self.assertClose(faces_verts, tex.faces_verts_textures_packed().cpu())

Nikhila Ravi's avatar
Nikhila Ravi committed
390
391
    def test_clone(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
392
        tex.atlas_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
393
394
        tex_cloned = tex.clone()
        self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
395
        self.assertClose(tex._atlas_padded, tex_cloned._atlas_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
396
        self.assertSeparate(tex.valid, tex_cloned.valid)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._atlas_list[i], tex_cloned._atlas_list[i])
            self.assertClose(tex._atlas_list[i], tex_cloned._atlas_list[i])

    def test_detach(self):
        tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3), requires_grad=True))
        tex.atlas_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._atlas_padded.requires_grad)
        self.assertClose(tex_detached._atlas_padded, tex._atlas_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._atlas_list[i].requires_grad)
            self.assertClose(tex._atlas_list[i], tex_detached._atlas_list[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
411
412
413

    def test_extend(self):
        B = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
414
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        F = mesh._F
        tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
        tex_mesh = Meshes(
            verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
        )
        N = 20
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

        for i in range(len(tex_mesh)):
            for n in range(N):
                self.assertClose(
                    tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
        R = 2
        N = 20
        num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
        atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
        tex = TexturesAtlas(atlas=atlas_list)

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh explicity.
        tex1 = tex.clone()
        tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
        atlas_packed = tex1.atlas_packed()
        atlas_list_new = tex1.atlas_list()
        atlas_padded = tex1.atlas_padded()

        for f1, f2 in zip(atlas_list_new, atlas_list):
            self.assertTrue((f1 == f2).all().item())

        sum_F = num_faces_per_mesh.sum()
        max_F = num_faces_per_mesh.max().item()
        self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
        self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))

        # Case where num_faces_per_mesh is not set and textures
        # are initialized with a padded tensor.
        atlas_list_padded = _list_to_padded_wrapper(atlas_list)
        tex2 = TexturesAtlas(atlas=atlas_list_padded)
        atlas_packed = tex2.atlas_packed()
        atlas_list_new = tex2.atlas_list()

        # Packed is just flattened padded as num_faces_per_mesh
        # has not been provided.
        self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))

        for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())

    def test_getitem(self):
        N = 5
        V = 20
Nikhila Ravi's avatar
Nikhila Ravi committed
487
488
        F = 10
        source = {"atlas": torch.randn(size=(N, F, 4, 4, 3))}
Nikhila Ravi's avatar
Nikhila Ravi committed
489
490
491
        tex = TexturesAtlas(atlas=source["atlas"])

        verts = torch.rand(size=(N, V, 3))
Nikhila Ravi's avatar
Nikhila Ravi committed
492
        faces = torch.randint(size=(N, F, 3), high=V)
Nikhila Ravi's avatar
Nikhila Ravi committed
493
494
495
496
497
498
499
500
501
502
503
504
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
        tryindex(self, index, tex, meshes, source)
        index = torch.tensor([1, 2], dtype=torch.int64)
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)

Nikhila Ravi's avatar
Nikhila Ravi committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def test_sample_textures_error(self):
        N = 1
        V = 20
        F = 10
        verts = torch.rand(size=(5, V, 3))
        faces = torch.randint(size=(5, F, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces)

        # TexturesAtlas have the wrong batch dim
        tex = TexturesAtlas(atlas=torch.randn(size=(1, F, 4, 4, 3)))
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        # TexturesAtlas have the wrong number of faces
        tex = TexturesAtlas(atlas=torch.randn(size=(N, 15, 4, 4, 3)))
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        meshes = Meshes(verts=verts, faces=faces)
        meshes.textures = tex

        # Cannot use the texture attribute set on meshes for sampling
        # textures if the dimensions don't match
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            meshes.sample_textures(None)

Nikhila Ravi's avatar
Nikhila Ravi committed
531
532

class TestTexturesUV(TestCaseMixin, unittest.TestCase):
533
534
535
536
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
537
    def test_sample_textures_uv(self):
facebook-github-bot's avatar
facebook-github-bot committed
538
539
540
541
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        dummy_verts = torch.zeros(4, 3)
542
        vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
facebook-github-bot's avatar
facebook-github-bot committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
        interpolated_uvs = torch.tensor(
            [[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
        )

        # Create a dummy texture map
        H = 2
        W = 2
        x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
        y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
        tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
561

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        for align_corners in [True, False]:
            tex = TexturesUV(
                maps=tex_map,
                faces_uvs=[face_uvs],
                verts_uvs=[vert_uvs],
                align_corners=align_corners,
            )
            meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
            mesh_textures = meshes.textures
            texels = mesh_textures.sample_textures(fragments)

            # Expected output
            pixel_uvs = interpolated_uvs * 2.0 - 1.0
            pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
            tex_map_ = torch.flip(tex_map, [1]).permute(0, 3, 1, 2)
            tex_map_ = torch.cat([tex_map_, tex_map_], dim=0)
            expected_out = F.grid_sample(
                tex_map_, pixel_uvs, align_corners=align_corners, padding_mode="border"
            )
            self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
facebook-github-bot's avatar
facebook-github-bot committed
582

Nikhila Ravi's avatar
Nikhila Ravi committed
583
    def test_textures_uv_init_fail(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
584
585
        # Maps has wrong shape
        with self.assertRaisesRegex(ValueError, "maps"):
Nikhila Ravi's avatar
Nikhila Ravi committed
586
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
587
                maps=torch.ones((5, 16, 16, 3, 4)),
Nikhila Ravi's avatar
Nikhila Ravi committed
588
589
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
590
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
591

Nikhila Ravi's avatar
Nikhila Ravi committed
592
593
        # faces_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "faces_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
594
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
595
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
596
597
                faces_uvs=torch.rand(size=(5, 10, 3, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
Nikhila Ravi's avatar
Nikhila Ravi committed
598
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
599

Nikhila Ravi's avatar
Nikhila Ravi committed
600
601
        # verts_uvs has wrong shape
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
Nikhila Ravi's avatar
Nikhila Ravi committed
602
            TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
603
                maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
604
605
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
606
607
            )

Nikhila Ravi's avatar
Nikhila Ravi committed
608
609
610
611
612
613
614
        # verts has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(8, 15, 2)),
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
615

Nikhila Ravi's avatar
Nikhila Ravi committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        # maps has different batch dim to faces
        with self.assertRaisesRegex(ValueError, "maps"):
            TexturesUV(
                maps=torch.ones((8, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

        # verts on different device to faces
        with self.assertRaisesRegex(ValueError, "verts_uvs"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3)),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
            )

        # maps on different device to faces
        with self.assertRaisesRegex(ValueError, "map"):
            TexturesUV(
                maps=torch.ones((5, 16, 16, 3), device="cuda"),
                faces_uvs=torch.rand(size=(5, 10, 3)),
                verts_uvs=torch.rand(size=(5, 15, 2)),
            )

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def test_faces_verts_textures(self):
        device = torch.device("cuda:0")
        N, V, F, H, W = 2, 5, 12, 8, 8
        vert_uvs = torch.rand((N, V, 2), dtype=torch.float32, device=device)
        face_uvs = torch.randint(
            high=V, size=(N, F, 3), dtype=torch.int64, device=device
        )
        maps = torch.rand((N, H, W, 3), dtype=torch.float32, device=device)

        tex = TexturesUV(maps=maps, verts_uvs=vert_uvs, faces_uvs=face_uvs)

        # naive faces_verts_textures
        faces_verts_texs = []
        for n in range(N):
            temp = torch.zeros((F, 3, 3), device=device, dtype=torch.float32)
            for f in range(F):
                uv0 = vert_uvs[n, face_uvs[n, f, 0]]
                uv1 = vert_uvs[n, face_uvs[n, f, 1]]
                uv2 = vert_uvs[n, face_uvs[n, f, 2]]

                idx = torch.stack((uv0, uv1, uv2), dim=0).view(1, 1, 3, 2)  # 1x1x3x2
                idx = idx * 2.0 - 1.0
                imap = maps[n].view(1, H, W, 3).permute(0, 3, 1, 2)  # 1x3xHxW
                imap = torch.flip(imap, [2])

                texts = torch.nn.functional.grid_sample(
                    imap,
                    idx,
                    align_corners=tex.align_corners,
                    padding_mode=tex.padding_mode,
                )  # 1x3x1x3
                temp[f] = texts[0, :, 0, :].permute(1, 0)
            faces_verts_texs.append(temp)
        faces_verts_texs = torch.cat(faces_verts_texs, 0)

        self.assertClose(faces_verts_texs, tex.faces_verts_textures_packed())

Nikhila Ravi's avatar
Nikhila Ravi committed
677
678
679
680
681
682
    def test_clone(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
683
684
        tex.faces_uvs_list()
        tex.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
685
686
        tex_cloned = tex.clone()
        self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
687
        self.assertClose(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
688
        self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
689
        self.assertClose(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
690
        self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
691
        self.assertClose(tex._maps_padded, tex_cloned._maps_padded)
Nikhila Ravi's avatar
Nikhila Ravi committed
692
        self.assertSeparate(tex.valid, tex_cloned.valid)
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
        for i in range(tex._N):
            self.assertSeparate(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertClose(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
            self.assertSeparate(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            self.assertClose(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertSeparate(tex.maps_list()[i], tex_cloned.maps_list()[i])
            self.assertClose(tex.maps_list()[i], tex_cloned.maps_list()[i])

    def test_detach(self):
        tex = TexturesUV(
            maps=torch.ones((5, 16, 16, 3), requires_grad=True),
            faces_uvs=torch.rand(size=(5, 10, 3)),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
        tex.faces_uvs_list()
        tex.verts_uvs_list()
        tex_detached = tex.detach()
        self.assertFalse(tex_detached._maps_padded.requires_grad)
        self.assertClose(tex._maps_padded, tex_detached._maps_padded)
        self.assertFalse(tex_detached._verts_uvs_padded.requires_grad)
        self.assertClose(tex._verts_uvs_padded, tex_detached._verts_uvs_padded)
        self.assertFalse(tex_detached._faces_uvs_padded.requires_grad)
        self.assertClose(tex._faces_uvs_padded, tex_detached._faces_uvs_padded)
        for i in range(tex._N):
            self.assertFalse(tex_detached._verts_uvs_list[i].requires_grad)
            self.assertClose(tex._verts_uvs_list[i], tex_detached._verts_uvs_list[i])
            self.assertFalse(tex_detached._faces_uvs_list[i].requires_grad)
            self.assertClose(tex._faces_uvs_list[i], tex_detached._faces_uvs_list[i])
            # tex._maps_list is not use anywhere so it's not stored. We call it explicitly
            self.assertFalse(tex_detached.maps_list()[i].requires_grad)
            self.assertClose(tex.maps_list()[i], tex_detached.maps_list()[i])
Nikhila Ravi's avatar
Nikhila Ravi committed
726
727
728

    def test_extend(self):
        B = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
729
        mesh = init_mesh(B, 30, 50)
Nikhila Ravi's avatar
Nikhila Ravi committed
730
731
732
733
734
735
736
737
738
739
740
741
742
        V = mesh._V
        num_faces = mesh.num_faces_per_mesh()
        num_verts = mesh.num_verts_per_mesh()
        faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
        verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
        tex_uv = TexturesUV(
            maps=torch.ones((B, 16, 16, 3)),
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
        )
        tex_mesh = Meshes(
            verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
743
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
744
745
746
747
748
749
750
        new_mesh = tex_mesh.extend(N)

        self.assertEqual(len(tex_mesh) * N, len(new_mesh))

        tex_init = tex_mesh.textures
        new_tex = new_mesh.textures

751
        new_tex_num_verts = new_mesh.num_verts_per_mesh()
Nikhila Ravi's avatar
Nikhila Ravi committed
752
753
        for i in range(len(tex_mesh)):
            for n in range(N):
754
                tex_nv = new_tex_num_verts[i * N + n]
Nikhila Ravi's avatar
Nikhila Ravi committed
755
                self.assertClose(
756
757
758
759
760
761
762
763
                    # The original textures were initialized using
                    # verts uvs list
                    tex_init.verts_uvs_list()[i],
                    # In the new textures, the verts_uvs are initialized
                    # from padded. The verts per mesh are not used to
                    # convert from padded to list. See TexturesUV for an
                    # explanation.
                    new_tex.verts_uvs_list()[i * N + n][:tex_nv, ...],
Nikhila Ravi's avatar
Nikhila Ravi committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
                )
                self.assertClose(
                    tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
                )
                self.assertClose(
                    tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
                )
                self.assertClose(
                    tex_init._num_faces_per_mesh[i],
                    new_tex._num_faces_per_mesh[i * N + n],
                )

        self.assertAllSeparate(
            [
                tex_init.faces_uvs_padded(),
                new_tex.faces_uvs_padded(),
                tex_init.verts_uvs_padded(),
                new_tex.verts_uvs_padded(),
                tex_init.maps_padded(),
                new_tex.maps_padded(),
            ]
        )

        with self.assertRaises(ValueError):
            tex_mesh.extend(N=-1)

    def test_padded_to_packed(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
791
792
793
        # Case where each face in the mesh has 3 unique uv vertex indices
        # - i.e. even if a vertex is shared between multiple faces it will
        # have a unique uv coordinate for each face.
Nikhila Ravi's avatar
Nikhila Ravi committed
794
        N = 2
Nikhila Ravi's avatar
Nikhila Ravi committed
795
796
797
798
799
        faces_uvs_list = [
            torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
            torch.tensor([[0, 1, 2], [3, 4, 5]]),
        ]  # (N, 3, 3)
        verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
Nikhila Ravi's avatar
Nikhila Ravi committed
800
801
802
803

        num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
        num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
        tex = TexturesUV(
Nikhila Ravi's avatar
Nikhila Ravi committed
804
            maps=torch.ones((N, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
805
806
            faces_uvs=faces_uvs_list,
            verts_uvs=verts_uvs_list,
Nikhila Ravi's avatar
Nikhila Ravi committed
807
808
809
810
811
        )

        # This is set inside Meshes when textures is passed as an input.
        # Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
        tex1 = tex.clone()
Nikhila Ravi's avatar
Nikhila Ravi committed
812
813
        tex1._num_faces_per_mesh = num_faces_per_mesh
        tex1._num_verts_per_mesh = num_verts_per_mesh
Nikhila Ravi's avatar
Nikhila Ravi committed
814
        verts_list = tex1.verts_uvs_list()
Nikhila Ravi's avatar
Nikhila Ravi committed
815
        verts_padded = tex1.verts_uvs_padded()
Nikhila Ravi's avatar
Nikhila Ravi committed
816

Nikhila Ravi's avatar
Nikhila Ravi committed
817
818
819
820
        faces_list = tex1.faces_uvs_list()
        faces_padded = tex1.faces_uvs_padded()

        for f1, f2 in zip(faces_list, faces_uvs_list):
Nikhila Ravi's avatar
Nikhila Ravi committed
821
822
            self.assertTrue((f1 == f2).all().item())

Nikhila Ravi's avatar
Nikhila Ravi committed
823
824
        for f1, f2 in zip(verts_list, verts_uvs_list):
            self.assertTrue((f1 == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
825

Nikhila Ravi's avatar
Nikhila Ravi committed
826
827
        self.assertTrue(faces_padded.shape == (2, 3, 3))
        self.assertTrue(verts_padded.shape == (2, 9, 2))
Nikhila Ravi's avatar
Nikhila Ravi committed
828

Nikhila Ravi's avatar
Nikhila Ravi committed
829
830
831
832
833
834
835
        # Case where num_faces_per_mesh is not set and faces_verts_uvs
        # are initialized with a padded tensor.
        tex2 = TexturesUV(
            maps=torch.ones((N, 16, 16, 3)),
            verts_uvs=verts_padded,
            faces_uvs=faces_padded,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
836
837
838
        faces_list = tex2.faces_uvs_list()
        verts_list = tex2.verts_uvs_list()

Nikhila Ravi's avatar
Nikhila Ravi committed
839
840
841
        for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
            n = num_faces_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
842

Nikhila Ravi's avatar
Nikhila Ravi committed
843
844
845
        for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
            n = num_verts_per_mesh[i]
            self.assertTrue((f1[:n] == f2).all().item())
Nikhila Ravi's avatar
Nikhila Ravi committed
846

Nikhila Ravi's avatar
Nikhila Ravi committed
847
848
    def test_to(self):
        tex = TexturesUV(
facebook-github-bot's avatar
facebook-github-bot committed
849
            maps=torch.ones((5, 16, 16, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
850
851
            faces_uvs=torch.randint(size=(5, 10, 3), high=15),
            verts_uvs=torch.rand(size=(5, 15, 2)),
facebook-github-bot's avatar
facebook-github-bot committed
852
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
853
854
        device = torch.device("cuda:0")
        tex = tex.to(device)
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        self.assertEqual(tex._faces_uvs_padded.device, device)
        self.assertEqual(tex._verts_uvs_padded.device, device)
        self.assertEqual(tex._maps_padded.device, device)

    def test_mesh_to(self):
        tex_cpu = TexturesUV(
            maps=torch.ones((5, 16, 16, 3)),
            faces_uvs=torch.randint(size=(5, 10, 3), high=15),
            verts_uvs=torch.rand(size=(5, 15, 2)),
        )
        verts = torch.rand(size=(5, 15, 3))
        faces = torch.randint(size=(5, 10, 3), high=15)
        mesh_cpu = Meshes(faces=faces, verts=verts, textures=tex_cpu)
        cpu = torch.device("cpu")
        device = torch.device("cuda:0")
        tex = mesh_cpu.to(device).textures
        self.assertEqual(tex._faces_uvs_padded.device, device)
        self.assertEqual(tex._verts_uvs_padded.device, device)
        self.assertEqual(tex._maps_padded.device, device)
        self.assertEqual(tex_cpu._verts_uvs_padded.device, cpu)

        self.assertEqual(tex_cpu.device, cpu)
        self.assertEqual(tex.device, device)
facebook-github-bot's avatar
facebook-github-bot committed
878

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
879
880
881
    def test_getitem(self):
        N = 5
        V = 20
Nikhila Ravi's avatar
Nikhila Ravi committed
882
        F = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
883
        source = {
Nikhila Ravi's avatar
Nikhila Ravi committed
884
            "maps": torch.rand(size=(N, 1, 1, 3)),
Nikhila Ravi's avatar
Nikhila Ravi committed
885
            "faces_uvs": torch.randint(size=(N, F, 3), high=V),
Nikhila Ravi's avatar
Nikhila Ravi committed
886
            "verts_uvs": torch.randn(size=(N, V, 2)),
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
887
        }
Nikhila Ravi's avatar
Nikhila Ravi committed
888
        tex = TexturesUV(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
889
890
891
892
893
894
            maps=source["maps"],
            faces_uvs=source["faces_uvs"],
            verts_uvs=source["verts_uvs"],
        )

        verts = torch.rand(size=(N, V, 3))
Nikhila Ravi's avatar
Nikhila Ravi committed
895
        faces = torch.randint(size=(N, F, 3), high=V)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
896
897
        meshes = Meshes(verts=verts, faces=faces, textures=tex)

Nikhila Ravi's avatar
Nikhila Ravi committed
898
899
        tryindex(self, 2, tex, meshes, source)
        tryindex(self, slice(0, 2, 1), tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
900
        index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
901
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
902
        index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
Nikhila Ravi's avatar
Nikhila Ravi committed
903
        tryindex(self, index, tex, meshes, source)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
904
        index = torch.tensor([1, 2], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
905
906
        tryindex(self, index, tex, meshes, source)
        tryindex(self, [2, 4], tex, meshes, source)
907

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
908
909
910
    def test_centers_for_image(self):
        maps = torch.rand(size=(1, 257, 129, 3))
        verts_uvs = torch.FloatTensor([[[0.25, 0.125], [0.5, 0.625], [0.5, 0.5]]])
911
912
913
        faces_uvs = torch.zeros(size=(1, 0, 3), dtype=torch.int64)
        tex = TexturesUV(maps=maps, faces_uvs=faces_uvs, verts_uvs=verts_uvs)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
914
915
        expected = torch.FloatTensor([[32, 224], [64, 96], [64, 128]])
        self.assertClose(tex.centers_for_image(0), expected)
916

Nikhila Ravi's avatar
Nikhila Ravi committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    def test_sample_textures_error(self):
        N = 1
        V = 20
        F = 10
        maps = torch.rand(size=(N, 1, 1, 3))
        verts_uvs = torch.randn(size=(N, V, 2))
        tex = TexturesUV(
            maps=maps,
            faces_uvs=torch.randint(size=(N, 15, 3), high=V),
            verts_uvs=verts_uvs,
        )
        verts = torch.rand(size=(5, V, 3))
        faces = torch.randint(size=(5, 10, 3), high=V)
        meshes = Meshes(verts=verts, faces=faces)

        # Wrong number of faces
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        # Wrong batch dim for faces
        tex = TexturesUV(
            maps=maps,
            faces_uvs=torch.randint(size=(1, F, 3), high=V),
            verts_uvs=verts_uvs,
        )
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            Meshes(verts=verts, faces=faces, textures=tex)

        # Wrong batch dim for verts_uvs is not necessary to check as
        # there is already a check inside TexturesUV for a batch dim
        # mismatch with faces_uvs

        meshes = Meshes(verts=verts, faces=faces)
        meshes.textures = tex

        # Cannot use the texture attribute set on meshes for sampling
        # textures if the dimensions don't match
        with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
            meshes.sample_textures(None)

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

class TestRectanglePacking(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

    def wrap_pack(self, sizes):
        """
        Call the pack_rectangles function, which we want to test,
        and return its outputs.
        Additionally makes some sanity checks on the output.
        """
        res = pack_rectangles(sizes)
        total = res.total_size
        self.assertGreaterEqual(total[0], 0)
        self.assertGreaterEqual(total[1], 0)
        mask = torch.zeros(total, dtype=torch.bool)
        seen_x_bound = False
        seen_y_bound = False
976
977
978
979
980
981
982
983
984
        for (in_x, in_y), (out_x, out_y, flipped, is_first) in zip(
            sizes, res.locations
        ):
            self.assertTrue(is_first)
            self.assertGreaterEqual(out_x, 0)
            self.assertGreaterEqual(out_y, 0)
            placed_x, placed_y = (in_y, in_x) if flipped else (in_x, in_y)
            upper_x = placed_x + out_x
            upper_y = placed_y + out_y
985
986
987
988
989
990
            self.assertGreaterEqual(total[0], upper_x)
            if total[0] == upper_x:
                seen_x_bound = True
            self.assertGreaterEqual(total[1], upper_y)
            if total[1] == upper_y:
                seen_y_bound = True
991
            already_taken = torch.sum(mask[out_x:upper_x, out_y:upper_y])
992
            self.assertEqual(already_taken, 0)
993
            mask[out_x:upper_x, out_y:upper_y] = 1
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        self.assertTrue(seen_x_bound)
        self.assertTrue(seen_y_bound)

        self.assertTrue(torch.all(torch.sum(mask, dim=0, dtype=torch.int32) > 0))
        self.assertTrue(torch.all(torch.sum(mask, dim=1, dtype=torch.int32) > 0))
        return res

    def assert_bb(self, sizes, expected):
        """
        Apply the pack_rectangles function to sizes and verify the
        bounding box dimensions are expected.
        """
        self.assertSetEqual(set(self.wrap_pack(sizes).total_size), expected)

    def test_simple(self):
        self.assert_bb([(3, 4), (4, 3)], {6, 4})
        self.assert_bb([(2, 2), (2, 4), (2, 2)], {4, 4})

        # many squares
        self.assert_bb([(2, 2)] * 9, {2, 18})

        # One big square and many small ones.
        self.assert_bb([(3, 3)] + [(1, 1)] * 2, {3, 4})
        self.assert_bb([(3, 3)] + [(1, 1)] * 3, {3, 4})
        self.assert_bb([(3, 3)] + [(1, 1)] * 4, {3, 5})
        self.assert_bb([(3, 3)] + [(1, 1)] * 5, {3, 5})
        self.assert_bb([(1, 1)] * 6 + [(3, 3)], {3, 5})
        self.assert_bb([(3, 3)] + [(1, 1)] * 7, {3, 6})

        # many identical rectangles
        self.assert_bb([(7, 190)] * 4 + [(190, 7)] * 4, {190, 56})

        # require placing the flipped version of a rectangle
        self.assert_bb([(1, 100), (5, 96), (4, 5)], {100, 6})

    def test_random(self):
        for _ in range(5):
            vals = torch.randint(size=(20, 2), low=1, high=18)
            sizes = []
            for j in range(vals.shape[0]):
                sizes.append((int(vals[j, 0]), int(vals[j, 1])))
            self.wrap_pack(sizes)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

    def test_all_identical(self):
        sizes = [Rectangle(xsize=61, ysize=82, identifier=1729)] * 3
        total_size, locations = pack_unique_rectangles(sizes)
        self.assertEqual(total_size, (61, 82))
        self.assertEqual(len(locations), 3)
        for i, (x, y, is_flipped, is_first) in enumerate(locations):
            self.assertEqual(x, 0)
            self.assertEqual(y, 0)
            self.assertFalse(is_flipped)
            self.assertEqual(is_first, i == 0)

    def test_one_different_id(self):
        sizes = [Rectangle(xsize=61, ysize=82, identifier=220)] * 3
        sizes.extend([Rectangle(xsize=61, ysize=82, identifier=284)] * 3)
        total_size, locations = pack_unique_rectangles(sizes)
        self.assertEqual(total_size, (82, 122))
        self.assertEqual(len(locations), 6)
        for i, (x, y, is_flipped, is_first) in enumerate(locations):
            self.assertTrue(is_flipped)
            self.assertEqual(is_first, i % 3 == 0)
            self.assertEqual(x, 0)
            if i < 3:
                self.assertEqual(y, 61)
            else:
                self.assertEqual(y, 0)