utils.py 3.89 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
8
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
sync BN  
Hang Zhang committed
11
"""Encoding Util Tools"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
12
13
14
import shutil
import os
import math
Hang Zhang's avatar
sync BN  
Hang Zhang committed
15
import torch
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
16

Hang Zhang's avatar
sync BN  
Hang Zhang committed
17
__all__ = ['get_optimizer', 'LR_Scheduler', 'save_checkpoint']
Hang Zhang's avatar
path  
Hang Zhang committed
18

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
19
20
def get_optimizer(args, model, diff_LR=True):
    """
Hang Zhang's avatar
sync BN  
Hang Zhang committed
21
    Returns an optimizer for given model,
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
22
23
24
25
26
27
28
29

    Args:
        args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay`
        model: if using different lr, define `model.pretrained` and `model.head`.
    """
    if diff_LR and model.pretrained is not None:
        print('Using different learning rate for pre-trained features')
        optimizer = torch.optim.SGD([
Hang Zhang's avatar
sync BN  
Hang Zhang committed
30
31
32
33
34
35
36
            {'params': model.pretrained.parameters()},
            {'params': model.head.parameters(),
             'lr': args.lr*10},
            ],
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
37
38
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
Hang Zhang's avatar
sync BN  
Hang Zhang committed
39
40
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
41
42
43
    return optimizer


Hang Zhang's avatar
path  
Hang Zhang committed
44
45
46
47
class LR_Scheduler(object):
    """Learning Rate Scheduler

    Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
48

Hang Zhang's avatar
path  
Hang Zhang committed
49
50
51
    Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))``

    Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
52
53

    Args:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
54
55
56
        args:  :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`),
          :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs,
          :attr:`args.lr_step`
Hang Zhang's avatar
path  
Hang Zhang committed
57

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
58
59
        niters: number of iterations per epoch
    """
Hang Zhang's avatar
path  
Hang Zhang committed
60
    def __init__(self, args, niters=0):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
61
        self.mode = args.lr_scheduler
Hang Zhang's avatar
path  
Hang Zhang committed
62
        print('Using {} LR Scheduler!'.format(self.mode))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
63
        self.lr = args.lr
Hang Zhang's avatar
path  
Hang Zhang committed
64
65
66
67
68
        if self.mode == 'step':
            self.lr_step = args.lr_step
        else:
            self.niters = niters
            self.N = args.epochs * niters
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
69
70
        self.epoch = -1

Hang Zhang's avatar
Hang Zhang committed
71
    def __call__(self, optimizer, i, epoch, best_pred):
Hang Zhang's avatar
path  
Hang Zhang committed
72
73
74
75
76
77
78
79
80
81
        if self.mode == 'cos':
            T = (epoch - 1) * self.niters + i
            lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
        elif self.mode == 'poly':
            T = (epoch - 1) * self.niters + i
            lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9)
        elif self.mode == 'step':
            lr = self.lr * (0.1 ** ((epoch - 1) // self.lr_step))
        else:
            raise RuntimeError('Unknown LR scheduler!')
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
82
        if epoch > self.epoch:
Hang Zhang's avatar
Hang Zhang committed
83
            print('\n=>Epoches %i, learning rate = %.4f, \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
84
                previous best = %.4f' % (epoch, lr, best_pred))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
85
86
87
88
89
90
            self.epoch = epoch
        self._adjust_learning_rate(optimizer, lr)

    def _adjust_learning_rate(self, optimizer, lr):
        if len(optimizer.param_groups) == 1:
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
path  
Hang Zhang committed
91
        else:
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
92
93
            # enlarge the lr at the head
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
sync BN  
Hang Zhang committed
94
            for i in range(1, len(optimizer.param_groups)):
Hang Zhang's avatar
path  
Hang Zhang committed
95
                optimizer.param_groups[i]['lr'] = lr * 10
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
96
97
98
99
100
101
102
103
104
105
106
107


# refer to https://github.com/xternalz/WideResNet-pytorch
def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'):
    """Saves checkpoint to disk"""
    directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname)
    if not os.path.exists(directory):
        os.makedirs(directory)
    filename = directory + filename
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, directory + 'model_best.pth.tar')