utils.py 6.03 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
import shutil
import os
import sys
import time
import math
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
17
import tqdm
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
18

Hang Zhang's avatar
path  
Hang Zhang committed
19
20
__all__ = ['get_optimizer', 'LR_Scheduler', 'save_checkpoint', 'progress_bar']

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def get_optimizer(args, model, diff_LR=True):
    """
    Returns an optimizer for given model, 

    Args:
        args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay`
        model: if using different lr, define `model.pretrained` and `model.head`.
    """
    if diff_LR and model.pretrained is not None:
        print('Using different learning rate for pre-trained features')
        optimizer = torch.optim.SGD([
                        {'params': model.pretrained.parameters()}, 
                        {'params': model.head.parameters(), 
                          'lr': args.lr*10},
                    ], 
                    lr=args.lr,
                    momentum=args.momentum, 
                    weight_decay=args.weight_decay)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                    momentum=args.momentum, 
                                    weight_decay=args.weight_decay) 
    return optimizer


Hang Zhang's avatar
path  
Hang Zhang committed
46
47
48
49
class LR_Scheduler(object):
    """Learning Rate Scheduler

    Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
50

Hang Zhang's avatar
path  
Hang Zhang committed
51
52
53
    Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))``

    Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
54
55

    Args:
Hang Zhang's avatar
path  
Hang Zhang committed
56
57
        args:  :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`), :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs, :attr:`args.lr_step`

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
58
59
        niters: number of iterations per epoch
    """
Hang Zhang's avatar
path  
Hang Zhang committed
60
61
62
    def __init__(self, args, niters=0):
        self.mode = args.lr_scheduler 
        print('Using {} LR Scheduler!'.format(self.mode))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
63
        self.lr = args.lr
Hang Zhang's avatar
path  
Hang Zhang committed
64
65
66
67
68
        if self.mode == 'step':
            self.lr_step = args.lr_step
        else:
            self.niters = niters
            self.N = args.epochs * niters
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
69
70
        self.epoch = -1

Hang Zhang's avatar
path  
Hang Zhang committed
71
72
73
74
75
76
77
78
79
80
81
    def __call__(self, optimizer, i, epoch):
        if self.mode == 'cos':
            T = (epoch - 1) * self.niters + i
            lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
        elif self.mode == 'poly':
            T = (epoch - 1) * self.niters + i
            lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9)
        elif self.mode == 'step':
            lr = self.lr * (0.1 ** ((epoch - 1) // self.lr_step))
        else:
            raise RuntimeError('Unknown LR scheduler!')
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
82
        if epoch > self.epoch:
Hang Zhang's avatar
path  
Hang Zhang committed
83
84
            print('\n=>Epoches %i, learning rate = %.4f' % (
                epoch, lr))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
85
86
87
88
89
90
            self.epoch = epoch
        self._adjust_learning_rate(optimizer, lr)

    def _adjust_learning_rate(self, optimizer, lr):
        if len(optimizer.param_groups) == 1:
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
path  
Hang Zhang committed
91
        else:
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
92
93
            # enlarge the lr at the head
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
path  
Hang Zhang committed
94
95
            for i in range(1,len(optimizer.param_groups)):
                optimizer.param_groups[i]['lr'] = lr * 10
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
96
97
98
99
100
101
102
103
104
105
106
107
108


# refer to https://github.com/xternalz/WideResNet-pytorch
def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'):
    """Saves checkpoint to disk"""
    directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname)
    if not os.path.exists(directory):
        os.makedirs(directory)
    filename = directory + filename
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, directory + 'model_best.pth.tar')

Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
109

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
110
111
# refer to https://github.com/kuangliu/pytorch-cifar/blob/master/utils.py
_, term_width = os.popen('stty size', 'r').read().split()
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
112
113
term_width = int(term_width)-1
TOTAL_BAR_LENGTH = 36.
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
114
115
last_time = time.time()
begin_time = last_time
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
116

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def progress_bar(current, total, msg=None):
    """Progress Bar for display
    """
    global last_time, begin_time
    if current == 0:
        begin_time = time.time()    # Reset for new bar.

    cur_len = int(TOTAL_BAR_LENGTH*current/total)
    rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1

    sys.stdout.write(' [')
    for i in range(cur_len):
        sys.stdout.write('=')
    sys.stdout.write('>')
    for i in range(rest_len):
        sys.stdout.write('.')
    sys.stdout.write(']')

    cur_time = time.time()
    step_time = cur_time - last_time
    last_time = cur_time
    tot_time = cur_time - begin_time

    L = []
    L.append('    Step: %s' % _format_time(step_time))
    L.append(' | Tot: %s' % _format_time(tot_time))
    if msg:
        L.append(' | ' + msg)

    msg = ''.join(L)
    sys.stdout.write(msg)
    for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
        sys.stdout.write(' ')

    # Go back to the center of the bar.
    for i in range(term_width-int(TOTAL_BAR_LENGTH/2)):
        sys.stdout.write('\b')
    sys.stdout.write(' %d/%d ' % (current+1, total))

    if current < total-1:
        sys.stdout.write('\r')
    else:
        sys.stdout.write('\n')
    sys.stdout.flush()

def _format_time(seconds):
    days = int(seconds / 3600/24)
    seconds = seconds - days*3600*24
    hours = int(seconds / 3600)
    seconds = seconds - hours*3600
    minutes = int(seconds / 60)
    seconds = seconds - minutes*60
    secondsf = int(seconds)
    seconds = seconds - secondsf
    millis = int(seconds*1000)

    f = ''
    i = 1
    if days > 0:
        f += str(days) + 'D'
        i += 1
    if hours > 0 and i <= 2:
        f += str(hours) + 'h'
        i += 1
    if minutes > 0 and i <= 2:
        f += str(minutes) + 'm'
        i += 1
    if secondsf > 0 and i <= 2:
        f += str(secondsf) + 's'
        i += 1
    if millis > 0 and i <= 2:
        f += str(millis) + 'ms'
        i += 1
    if f == '':
        f = '0ms'
    return f