##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """Encoding Util Tools""" import shutil import os import math import torch __all__ = ['get_optimizer', 'LR_Scheduler', 'save_checkpoint'] def get_optimizer(args, model, diff_LR=True): """ Returns an optimizer for given model, Args: args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay` model: if using different lr, define `model.pretrained` and `model.head`. """ if diff_LR and model.pretrained is not None: print('Using different learning rate for pre-trained features') optimizer = torch.optim.SGD([ {'params': model.pretrained.parameters()}, {'params': model.head.parameters(), 'lr': args.lr*10}, ], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) return optimizer class LR_Scheduler(object): """Learning Rate Scheduler Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}`` Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))`` Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9`` Args: args: :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`), :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs, :attr:`args.lr_step` niters: number of iterations per epoch """ def __init__(self, args, niters=0): self.mode = args.lr_scheduler print('Using {} LR Scheduler!'.format(self.mode)) self.lr = args.lr if self.mode == 'step': self.lr_step = args.lr_step else: self.niters = niters self.N = args.epochs * niters self.epoch = -1 def __call__(self, optimizer, i, epoch, best_pred): if self.mode == 'cos': T = (epoch - 1) * self.niters + i lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi)) elif self.mode == 'poly': T = (epoch - 1) * self.niters + i lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9) elif self.mode == 'step': lr = self.lr * (0.1 ** ((epoch - 1) // self.lr_step)) else: raise RuntimeError('Unknown LR scheduler!') if epoch > self.epoch: print('\n=>Epoches %i, learning rate = %.4f, \ previous best = %.4f' % (epoch, lr, best_pred)) self.epoch = epoch self._adjust_learning_rate(optimizer, lr) def _adjust_learning_rate(self, optimizer, lr): if len(optimizer.param_groups) == 1: optimizer.param_groups[0]['lr'] = lr else: # enlarge the lr at the head optimizer.param_groups[0]['lr'] = lr for i in range(1, len(optimizer.param_groups)): optimizer.param_groups[i]['lr'] = lr * 10 # refer to https://github.com/xternalz/WideResNet-pytorch def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'): """Saves checkpoint to disk""" directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname) if not os.path.exists(directory): os.makedirs(directory) filename = directory + filename torch.save(state, filename) if is_best: shutil.copyfile(filename, directory + 'model_best.pth.tar')