utils.py 5.42 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
import shutil
import os
import sys
import time
import math

def get_optimizer(args, model, diff_LR=True):
    """
    Returns an optimizer for given model, 

    Args:
        args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay`
        model: if using different lr, define `model.pretrained` and `model.head`.
    """
    if diff_LR and model.pretrained is not None:
        print('Using different learning rate for pre-trained features')
        optimizer = torch.optim.SGD([
                        {'params': model.pretrained.parameters()}, 
                        {'params': model.head.parameters(), 
                          'lr': args.lr*10},
                    ], 
                    lr=args.lr,
                    momentum=args.momentum, 
                    weight_decay=args.weight_decay)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                    momentum=args.momentum, 
                                    weight_decay=args.weight_decay) 
    return optimizer


class CosLR_Scheduler(object):
    """Cosine Learning Rate Scheduler

    .. math::
        lr = base_lr * 0.5 * (1 + cos(T/N))

    where ``T`` is current iters and ``N`` is total iters

    Args:
        args:  base learning rate :attr:`args.lr`, number of epochs :attr:`args.epochs`
        niters: number of iterations per epoch
    """
    def __init__(self, args, niters):
        self.lr = args.lr
        self.niters = niters
        self.N = args.epochs * niters
        self.epoch = -1

    def __call__(self, optimizer, i, epoch, best_pred):
        T = (epoch - 1) * self.niters + i
        lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
        if epoch > self.epoch:
            print('=>Epochs %i, learning rate = %.4f, previous best ='\
                '%.3f%%' % (epoch, lr, best_pred))
            self.epoch = epoch
        self._adjust_learning_rate(optimizer, lr)

    def _adjust_learning_rate(self, optimizer, lr):
        if len(optimizer.param_groups) == 1:
            optimizer.param_groups[0]['lr'] = lr
        elif len(optimizer.param_groups) == 2:
            # enlarge the lr at the head
            optimizer.param_groups[0]['lr'] = lr
            optimizer.param_groups[1]['lr'] = lr * 10
        else:
            raise RuntimeError('unsupported number of param groups: {}' \
                .format(len(optimizer.param_groups)))


# refer to https://github.com/xternalz/WideResNet-pytorch
def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'):
    """Saves checkpoint to disk"""
    directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname)
    if not os.path.exists(directory):
        os.makedirs(directory)
    filename = directory + filename
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, directory + 'model_best.pth.tar')

# refer to https://github.com/kuangliu/pytorch-cifar/blob/master/utils.py
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 86.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
    """Progress Bar for display
    """
    global last_time, begin_time
    if current == 0:
        begin_time = time.time()    # Reset for new bar.

    cur_len = int(TOTAL_BAR_LENGTH*current/total)
    rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1

    sys.stdout.write(' [')
    for i in range(cur_len):
        sys.stdout.write('=')
    sys.stdout.write('>')
    for i in range(rest_len):
        sys.stdout.write('.')
    sys.stdout.write(']')

    cur_time = time.time()
    step_time = cur_time - last_time
    last_time = cur_time
    tot_time = cur_time - begin_time

    L = []
    L.append('    Step: %s' % _format_time(step_time))
    L.append(' | Tot: %s' % _format_time(tot_time))
    if msg:
        L.append(' | ' + msg)

    msg = ''.join(L)
    sys.stdout.write(msg)
    for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
        sys.stdout.write(' ')

    # Go back to the center of the bar.
    for i in range(term_width-int(TOTAL_BAR_LENGTH/2)):
        sys.stdout.write('\b')
    sys.stdout.write(' %d/%d ' % (current+1, total))

    if current < total-1:
        sys.stdout.write('\r')
    else:
        sys.stdout.write('\n')
    sys.stdout.flush()

def _format_time(seconds):
    days = int(seconds / 3600/24)
    seconds = seconds - days*3600*24
    hours = int(seconds / 3600)
    seconds = seconds - hours*3600
    minutes = int(seconds / 60)
    seconds = seconds - minutes*60
    secondsf = int(seconds)
    seconds = seconds - secondsf
    millis = int(seconds*1000)

    f = ''
    i = 1
    if days > 0:
        f += str(days) + 'D'
        i += 1
    if hours > 0 and i <= 2:
        f += str(hours) + 'h'
        i += 1
    if minutes > 0 and i <= 2:
        f += str(minutes) + 'm'
        i += 1
    if secondsf > 0 and i <= 2:
        f += str(secondsf) + 's'
        i += 1
    if millis > 0 and i <= 2:
        f += str(millis) + 'ms'
        i += 1
    if f == '':
        f = '0ms'
    return f