##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import torch import shutil import os import sys import time import math import tqdm __all__ = ['get_optimizer', 'LR_Scheduler', 'save_checkpoint', 'progress_bar'] def get_optimizer(args, model, diff_LR=True): """ Returns an optimizer for given model, Args: args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay` model: if using different lr, define `model.pretrained` and `model.head`. """ if diff_LR and model.pretrained is not None: print('Using different learning rate for pre-trained features') optimizer = torch.optim.SGD([ {'params': model.pretrained.parameters()}, {'params': model.head.parameters(), 'lr': args.lr*10}, ], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) return optimizer class LR_Scheduler(object): """Learning Rate Scheduler Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}`` Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))`` Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9`` Args: args: :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`), :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs, :attr:`args.lr_step` niters: number of iterations per epoch """ def __init__(self, args, niters=0): self.mode = args.lr_scheduler print('Using {} LR Scheduler!'.format(self.mode)) self.lr = args.lr if self.mode == 'step': self.lr_step = args.lr_step else: self.niters = niters self.N = args.epochs * niters self.epoch = -1 def __call__(self, optimizer, i, epoch): if self.mode == 'cos': T = (epoch - 1) * self.niters + i lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi)) elif self.mode == 'poly': T = (epoch - 1) * self.niters + i lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9) elif self.mode == 'step': lr = self.lr * (0.1 ** ((epoch - 1) // self.lr_step)) else: raise RuntimeError('Unknown LR scheduler!') if epoch > self.epoch: print('\n=>Epoches %i, learning rate = %.4f' % ( epoch, lr)) self.epoch = epoch self._adjust_learning_rate(optimizer, lr) def _adjust_learning_rate(self, optimizer, lr): if len(optimizer.param_groups) == 1: optimizer.param_groups[0]['lr'] = lr else: # enlarge the lr at the head optimizer.param_groups[0]['lr'] = lr for i in range(1,len(optimizer.param_groups)): optimizer.param_groups[i]['lr'] = lr * 10 # refer to https://github.com/xternalz/WideResNet-pytorch def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'): """Saves checkpoint to disk""" directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname) if not os.path.exists(directory): os.makedirs(directory) filename = directory + filename torch.save(state, filename) if is_best: shutil.copyfile(filename, directory + 'model_best.pth.tar') # refer to https://github.com/kuangliu/pytorch-cifar/blob/master/utils.py _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width)-1 TOTAL_BAR_LENGTH = 36. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): """Progress Bar for display """ global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % _format_time(step_time)) L.append(' | Tot: %s' % _format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def _format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f