1. 29 Aug, 2025 1 commit
    • Daniel Hiltgen's avatar
      perf: build graph for next batch async to keep GPU busy (#11863) · 517807cd
      Daniel Hiltgen authored
      * perf: build graph for next batch in parallel to keep GPU busy
      
      This refactors the main run loop of the ollama runner to perform the main GPU
      intensive tasks (Compute+Floats) in a go routine so we can prepare the next
      batch in parallel to reduce the amount of time the GPU stalls waiting for the
      next batch of work.
      
      * tests: tune integration tests for ollama engine
      
      This tunes the integration tests to focus more on models supported
      by the new engine.
      517807cd
  2. 25 Aug, 2025 1 commit
  3. 14 Aug, 2025 1 commit
    • Michael Yang's avatar
      update vendored llama.cpp and ggml (#11823) · 1a19df1f
      Michael Yang authored
      * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
      
      This will be redone once my branch is merged upstream in llama.cpp
      
      * feat: Update all patches
      
      There are a number that are no longer needed at all:
      
      - 0003-embeddings: Embeddings entirely overhauled on master
      - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
          overhauled on master
      - 0019-metal-add-mean-kernel-14267: Merged upstream
      - 0020-CUDA-add-mean-operation-14313: Merged upstream
      
      * feat: Sync llama.cpp and ggml
      
      * fix: Update rsync-filter for all moved/new/removed files
      
      * fix: Add files missing from sync
      
      * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
      
      * fix: Add ggml files missing from sync
      
      * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
      
      * fix: Remove mtmd main cpp files
      
      * fix: Add missing include in sampling_ext.cpp
      
      * fix: Update llama.go to use mtmd instead of clip/llava
      
      * fix: Add patch for mtmd_input_text
      
      * chore: Ignore *.patched in the patch directory
      
      * fix: Fix support for arch-specific ggml-cpu source files with new arrangement
      
      In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
      implementations were split out into a nested tree structure under
      ggml-cpu/arch. This conflicts with standard CGO layout where all
      arch-specific source files are expected to live in the same directory as
      the parent go module and use suffixes based on GOOS and GOARCH. As such,
      there were really two options for getting this to work:
      
      1. Add a patch on top of the GGML sync to rearrange the files to match the
      GO layout convention
      2. Use CGO directives to conditionally include the nested source files in
      the compilation units
      
      This commit does (2) in order to minimize the set of changes needed on top
      of the upstream file layout. To get this to work, there are two key things
      needed:
      
      1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
      the preprocessor directives
      2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
      explicitly include the .c|.cpp files for the given architecture from the
      nested directory
      
      * fix: Use mtmd_helper to correctly load the bitmap for the image
      
      * fix: Apply patch for mtmd_text_input
      
      * fix: Add missing stb to llama.cpp rsync-filter
      
      * fix: Add sync'ed stb vendored header
      
      * fix: Use c++17 and include vendor for go wrapper modules
      
      * fix: Update patch 0015 for upstream implementation of uuid
      
      * feat: Bump to the latest tip of the branch
      
      * fix: Update patches for bump
      
      * feat: Bump back to the cenral repo and point at the latest master
      
      This includes granite 4 and a number of other model architectures!
      
      * fix: Revert changes to ggml export GPU UUID patch
      
      * fix: Add patch for GGML_VERSION and GGML_COMMIT constants
      
      * feat: Sync all patched code
      
      * build: Include cmake/common.cmake in ggml sync
      
      * build: Add top-level include for GNUINstallDirs in CMakeLists.txt
      
      This is used to populate CMAKE_INSTALL_BINDIR
      
      * fix: Add a patch to avoid power throttling API on non-msvc windows builds
      
      * fix: Sync patch changes for ggml-cpu.c
      
      * feat: Bump llama.cpp to 4a4f42
      
      This picks up support for Kimi K2 and PLaMO-2
      
      * feat: Sync llama.cpp
      
      * fix: Handle multi-chunk image encodings from mtmd
      
      * fix: Re-number patches after merge with `main`
      
      * feat: Bump to 41e78c in the makefile
      
      * fix: Fix Solar and argsort/copy patches after bump
      
      * fix: Remove Gemma3n CUDA Graphs patch
      
      It was implemented upstream:
      https://github.com/ggml-org/llama.cpp/pull/14741
      
      * feat: Sync llama.cpp / ggml after latest bump
      
      * build: Remove unnecessary CFLAGS definitions in cpu.go
      
      * fix: Remove unnecessary additions in the rsync-filter
      
      * fix: Remove unused vendored code for chat template parsing
      
      * Revert "fix: Remove Gemma3n CUDA Graphs patch"
      
      This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
      
      * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
      
      https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
      
      
      
      * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
      
      * unwind mxfp4 patch
      
      Prepare to bump ggml with their impl for mxfp4
      
      * bump
      
      * fix windows build error
      
      * Convert tensors at load time
      
      Repack the mxfp4 tensors as ggmls kernels expect them to be.
      
      * convert mlp bf16 to f32
      
      * buffer the conversion better
      
      * reshape earlier
      
      * openai swiglu
      
      * add ids
      
      * split qkv, gate_up
      
      * fix nested alt tags
      
      * fast attention
      
      * remove debug messages
      
      * fix lint
      
      * remove redundant test
      
      * remap values only if source/target are different
      
      * add back i32->i32 copy
      
      * refactor cpu quants
      
      * clean up vendor
      
      * update patch instructions
      
      * clean up patches
      
      * remove webgpu
      
      * update mem
      
      * also handle gpt-oss
      
      * revert convert changes
      
      ---------
      Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>
      Co-authored-by: default avatarGabe Goodhart <ghart@us.ibm.com>
      Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
      1a19df1f
  4. 05 Aug, 2025 1 commit
    • Michael Yang's avatar
      gpt-oss (#11672) · fa7776fd
      Michael Yang authored
      
      
      * bf16
      
      * tests
      
      * gpt-oss
      
      * enable gptoss for engine
      
      * rough estimate
      
      * convert to mxfp4
      
      * handle safetensors U8
      
      * clamp glu/linear
      
      * update tokenizer
      
      * MXFP4 support
      
      This implements the Open Compute Microscaling (MX) FP4 format
      as a tensor type with backend implementations focusing
      on mulmat and mulmatid on CPU, CUDA, and Metal.
      
      * Unit tests for MXFP4 support
      
      This exercises various operations and shapes on both CPU and GPU (if detected
      on the system)
      
      * cuda graph
      
      * unit test adjustments
      
      * cuda: optimize memory access
      
      Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
      
      * mac: fix crash on old macos versions
      
      cblas_sgemm is only supported on v13.3 and up, however bf16 is
      only supported on v14+ so we were falling back to ggml-blas and
      crashing on bf16 tensors.  Checking for the function being null
      seems to be the simplest way to condittionally avoid registering the
      backend.
      
      * server: Minimum context length for gptoss
      
      This model requires a minimum context length of 8192 to function
      effectively. Users can set higher values through all normal mechanisms
      but lower values will be silently reset.
      
      * ggml: Multiply by numParallel for gptoss sliding window
      
      When computing the graph size estimate, the context size is already
      multiplied by numParallel so estimates reflect that. However, since
      sliding window models use a smaller, fixed context size, they need
      to manually take numParallel into account.
      
      * gpt-oss integration
      
      includes harmony parser and thinking levels, etc.
      
      * fix sync
      
      * fix tests
      
      * fix lint
      
      ---------
      Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
      Co-authored-by: default avatarJesse Gross <jesse@ollama.com>
      Co-authored-by: default avatarDevon Rifkin <drifkin@drifkin.net>
      fa7776fd
  5. 29 Jul, 2025 1 commit
  6. 11 Jul, 2025 1 commit
  7. 27 Jun, 2025 1 commit
  8. 26 Jun, 2025 1 commit
  9. 11 Jun, 2025 1 commit
  10. 22 May, 2025 2 commits
    • Jesse Gross's avatar
      ml: Panic rather than return error on tensor allocation failure · 1f371ea9
      Jesse Gross authored
      FromFloatSlice and FromIntSlice return an error if the shape doesn't
      match the passed data or if memory can't be allocated. Since these
      are inputs, the memory being allocated is system memory rather than VRAM.
      
      In many cases, the caller can't really handle the error and panics.
      
      Empty and Zeros directly panic if they can't allocate memory.
      
      This makes things consistent by panicing for the first two cases,
      removing a fair amount of error handling code. This is also consistent
      with how Go typically handles these situations.
      1f371ea9
    • Michael Yang's avatar
      fix: mllama quality (#10807) · adff143b
      Michael Yang authored
      * fix mllama convert
      
      - transform attn_gate and ffn_gate
      - swap attention heads for vision models
      
      * fix mllama
      
      the mlp gate which was applied in the wrong place
      adff143b
  11. 21 May, 2025 3 commits
    • Michael Yang's avatar
      feat: port qwen2 model (#10782) · c8900113
      Michael Yang authored
      c8900113
    • Michael Yang's avatar
      feat: qwen3 dense and sparse models (#10708) · e0ed984c
      Michael Yang authored
      * feat: qwen3 dense
      * feat: qwen3moe
      * fix llama4 moe
      e0ed984c
    • Michael Yang's avatar
      fix: qwen25vl assign samebatch in multimodal input (#10789) · 69b2fe92
      Michael Yang authored
      setting samebatch on the vision start token is problematic because it
      will be shared with other inputs that also use images. this will cause
      the input to be cached and the runner will not see SameBatch. SameBatch
      will also be incorrect since it may be for a different image.
      
      assigning samebatch to the input tokens resolves this by ensure it's
      assigned correctly to inputs corresponding to the image.
      
      not setting same batch correctly may cause panics during inference since
      images are no longer guaranteed to be in the same batch.
      69b2fe92
  12. 20 May, 2025 1 commit
  13. 19 May, 2025 1 commit
  14. 16 May, 2025 1 commit
  15. 15 May, 2025 2 commits
    • Jesse Gross's avatar
      ollamarunner: Separate text and multimodal graphs · 3c14461d
      Jesse Gross authored
      For some multimodal models (such as gemma3), we create a single
      graph that generates the image embedding and then use this in the
      text model. The embedding tensor is completely opaque to the runner.
      
      However, this doesn't work if we need to use the embedding in multiple
      batches. This can arise if the embedding is larger than the batch size.
      In these cases (as with llama4), we would like to create views that
      are more appropriately sized. However, if we do this then the original
      source tensor is used in multiple graphs, which isn't allowed. To
      avoid that problem, models with this pattern compute the embedding
      tensor on first use and recreate the individual views. There is no
      longer a single vision and text graph.
      
      This codifies the pattern of separating vision and text graphs. The
      logic of computing tensors on demand is moved to the runner, so models
      no longer have to worry about this. It also gives the runner visibility
      into the multimodal tensors, which is important for memory management.
      3c14461d
    • Michael Yang's avatar
      fix pixel values padding (#10718) · ef202789
      Michael Yang authored
      * panic if trying to pad 4d
      
      * fix pixel values padding
      ef202789
  16. 14 May, 2025 2 commits
  17. 13 May, 2025 1 commit
  18. 12 May, 2025 1 commit
  19. 26 Apr, 2025 1 commit
  20. 25 Apr, 2025 6 commits
  21. 24 Apr, 2025 1 commit
  22. 18 Apr, 2025 1 commit
  23. 03 Apr, 2025 2 commits
  24. 02 Apr, 2025 1 commit
  25. 20 Mar, 2025 3 commits
    • Jesse Gross's avatar
      model: Pass input tensor instead of raw data to models · 0fbfcf3c
      Jesse Gross authored
      Rather than directly giving the input data to models, we can
      pass a tensor instead. In the short term, this saves some duplicated
      code.
      
      Longer term, we will want to overlap setting up the next batch with
      processing of the current one. In this case, we will only have the
      shape of tensor but it will not be loaded with data at the time of
      graph generation. By passing only a tensor to models now, we set up
      this possibility and prevent them from relying on data that they won't
      have in the future.
      
      Although the same could be done for Positions and Outputs, in some
      cases we either need the raw input data or don't use them at all.
      Therefore, for now we leave them as they are and allow models to
      convert them to tensors as needed.
      0fbfcf3c
    • Jesse Gross's avatar
      input: Rename Options to Batch · 0c220935
      Jesse Gross authored
      Options is no longer very descriptive of this struct.
      0c220935
    • Jesse Gross's avatar
      gemma2: Remove second call to Rows · b078dd15
      Jesse Gross authored
      Looks like a merge conflict that broke the model.
      b078dd15
  26. 19 Mar, 2025 1 commit
  27. 14 Mar, 2025 1 commit
    • Jesse Gross's avatar
      ollamarunner: Use a separate context per multimodal input · 282bfaaa
      Jesse Gross authored
      Currently there is a single context per sequence, shared all by
      all multimodal inputs. Since we build a vision encoder graph per
      image, with a large number of inputs we can eventually hit the
      maximum number of graph nodes per context.
      
      This changes to use a separate context for each image, ensuring
      that available resource limits are consistent.
      282bfaaa