backend.go 12.4 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package ml

import (
	"bytes"
5
	"context"
Michael Yang's avatar
Michael Yang committed
6
7
	"encoding/binary"
	"fmt"
8
	"log/slog"
9
	"math"
Michael Yang's avatar
Michael Yang committed
10
	"slices"
Michael Yang's avatar
Michael Yang committed
11
12
13
	"strconv"
	"strings"

14
15
	"github.com/ollama/ollama/fs"
)
Michael Yang's avatar
Michael Yang committed
16
17

type Backend interface {
18
	Load(ctx context.Context, progress func(float32)) error
19
20
21
22

	// BackendMemory returns the memory allocations that were made for this model
	BackendMemory() BackendMemory

23
	Config() fs.Config
Michael Yang's avatar
Michael Yang committed
24
25
	Get(name string) Tensor
	NewContext() Context
26
	NewContextSize(size int) Context
Michael Yang's avatar
Michael Yang committed
27
28
}

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
48
49
50
51
52
53
54
55

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
56
57
}

58
59
60
61
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
62

63
64
65
66
67
68
69
70
	// MainGPU is the index of the primary GPU to use
	MainGPU int

	// NumGPULayers is the number of layers to offload to GPUs
	NumGPULayers int

	// TensorSplit is the fraction of the model to offload to each GPU
	TensorSplit []float32
71
72
73

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
74
75
}

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
	BackendMemory
}

func (e ErrNoMem) Error() string {
	return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}

type AllocationStatus int

const (
	// Unallocated memory - have not yet attempted to allocate
	Unallocated AllocationStatus = iota

	// Failed memory - tried to allocate the memory and did not succeed
	Failed

	// Allocated memory = tried and succeeded to allocate memory
	Allocated
)

// Memory is the size of an allocation and whether it was successful.
type Memory struct {
	Size   uint64
	Status AllocationStatus
}

func (m Memory) String() string {
	s := fmt.Sprint(m.Size)

	switch m.Status {
	case Unallocated:
		s += "U"
	case Failed:
		s += "F"
	case Allocated:
		s += "A"
	}

	return s
}

// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
	// Name is the name of the device as labeled by the backend. It
	// may not be persistent across instances of the runner.
	Name string

127
128
129
	// ID is an identifier for the device for matching with system
	// management libraries.
	ID string
130

131
132
133
134
135
136
137
138
139
140
	// Weights is the per-layer memory needed for the model weights.
	Weights []Memory

	// Cache is the per-layer memory needed for the KV cache.
	Cache []Memory

	// Graph is the size of the compute graph. It is not per-layer.
	Graph Memory
}

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
func memoryPresent(mem []Memory) bool {
	return slices.ContainsFunc(mem, func(m Memory) bool { return m.Size != 0 })
}

func (m DeviceMemory) LogValue() slog.Value {
	var attrs []slog.Attr
	if memoryPresent(m.Weights) {
		attrs = append(attrs, slog.Any("Weights", m.Weights))
	}

	if memoryPresent(m.Cache) {
		attrs = append(attrs, slog.Any("Cache", m.Cache))
	}

	if m.Graph.Size != 0 {
		attrs = append(attrs, slog.Any("Graph", m.Graph))
	}

159
160
	if len(attrs) > 0 && m.ID != "" {
		attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
161
162
	}

163
164
165
	return slog.GroupValue(attrs...)
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
	// InputsWeights are always located on the CPU and cannot be moved
	InputWeights Memory

	// CPU model components are located in system memory. This does not
	// include unified memory allocated through the GPU.
	CPU DeviceMemory

	// GPU model components are located on one or more GPUs.
	GPUs []DeviceMemory
}

183
184
185
186
187
188
189
190
191
192
193
194
195
196
func (m BackendMemory) LogValue() slog.Value {
	var attrs []slog.Attr
	if m.InputWeights.Size != 0 {
		attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
	}

	attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
	for _, g := range m.GPUs {
		attrs = append(attrs, slog.Any(g.Name, g))
	}

	return slog.GroupValue(attrs...)
}

197
var backends = make(map[string]func(string, BackendParams) (Backend, error))
198

199
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
200
201
202
203
204
205
206
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

207
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
208
	if backend, ok := backends["ggml"]; ok {
209
		return backend(modelPath, params)
Michael Yang's avatar
Michael Yang committed
210
211
212
213
214
215
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
216
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
217
	Zeros(dtype DType, shape ...int) Tensor
218
219
	FromFloatSlice(s []float32, shape ...int) Tensor
	FromIntSlice(s []int32, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
220

Michael Yang's avatar
arange  
Michael Yang committed
221
222
223
	// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
	Arange(start, stop, step float32, dtype DType) Tensor

224
	Forward(...Tensor) Context
225
	Compute(...Tensor)
226
227
228
229
230

	// Reserve is analogous to Compute but rather than executing a
	// graph, simply preallocates memory. Typically called with a
	// worst case graph to ensure all resources are available for
	// for future inference.
231
	Reserve()
232

233
	MaxGraphNodes() int
234
	Close()
235

236
237
	// Input returns a context appropriate for creating tensors that are
	// inputs to the model (which includes things like output locations)
238
239
240
241
	Input() Context

	// Layer returns a context appropriate for creating intermediate tensors
	Layer(int) Context
Michael Yang's avatar
Michael Yang committed
242
243
244
}

type Tensor interface {
245
246
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
247

248
	Shape() []int
Michael Yang's avatar
Michael Yang committed
249
250
251
252
253
	DType() DType

	Bytes() []byte
	Floats() []float32

254
	Neg(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
255
	Add(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
256
	Sub(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
257
	Mul(ctx Context, t2 Tensor) Tensor
258
259
	Div(ctx Context, t2 Tensor) Tensor

Michael Yang's avatar
Michael Yang committed
260
	Mulmat(ctx Context, t2 Tensor) Tensor
261
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
262
	MulmatID(ctx Context, t2, ids Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
263
264
265
266
267

	Softmax(ctx Context) Tensor
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor
268
	SumRows(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
269

Michael Yang's avatar
Michael Yang committed
270
	AvgPool2D(ctx Context, k, s int, p float32) Tensor
Michael Yang's avatar
Michael Yang committed
271
	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
272

273
	IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
274

275
276
	Sin(ctx Context) Tensor
	Cos(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
277
278
	Tanh(ctx Context) Tensor
	GELU(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
279
	QuickGELU(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
280
	SILU(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
281
	RELU(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
282
	Sigmoid(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
283

284
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
285
286
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
287
	Contiguous(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
288
	Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Michael Yang's avatar
Michael Yang committed
289

290
	Pad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
291
292

	Stack(ctx Context, dim int, s ...Tensor) Tensor
293
294
295

	// Repeat repeats the tensor n times along dimension dim
	Repeat(ctx Context, dim, n int) Tensor
Michael Yang's avatar
Michael Yang committed
296
297
298
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
299
	Duplicate(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
300
301

	TopK(ctx Context, k int) Tensor
302
	Argsort(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
303
304
305
306
307
308
	Mean(ctx Context) Tensor
	Variance(ctx Context) Tensor
	Stddev(ctx Context) Tensor
	Sqr(ctx Context) Tensor
	Sqrt(ctx Context) Tensor
	Clamp(ctx Context, min, max float32) Tensor
Michael Yang's avatar
Michael Yang committed
309
310
}

311
312
313
314
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
315
316
317
318
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
	ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor
}

Michael Yang's avatar
Michael Yang committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

351
type DumpOptions func(*dumpOptions)
Michael Yang's avatar
Michael Yang committed
352

353
354
355
356
357
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Precision = n
	}
Michael Yang's avatar
Michael Yang committed
358
359
}

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Threshold = n
	}
}

// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.EdgeItems = n
	}
}

type dumpOptions struct {
	Precision, Threshold, EdgeItems int
}

func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
	opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
	for _, optsFunc := range optsFuncs {
		optsFunc(&opts)
	}

	if mul(t.Shape()...) <= opts.Threshold {
		opts.EdgeItems = math.MaxInt
Michael Yang's avatar
Michael Yang committed
388
389
390
391
	}

	switch t.DType() {
	case DTypeF32:
392
393
		return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Jesse Gross's avatar
Jesse Gross committed
394
		})
395
	case DTypeF16, DTypeQ80, DTypeQ40:
396
		f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
397
		f32 = t.Copy(ctx, f32)
398
399
		return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Michael Yang's avatar
Michael Yang committed
400
401
		})
	case DTypeI32:
402
		return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
403
404
405
406
407
408
409
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
410
411
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
412
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
413
414
415
416
417
418
419
420
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()
Michael Yang's avatar
Michael Yang committed
421
	slices.Reverse(shape)
Michael Yang's avatar
Michael Yang committed
422
423

	var sb strings.Builder
424
425
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
426
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
Michael Yang's avatar
Michael Yang committed
427
428
		sb.WriteString("[")
		defer func() { sb.WriteString("]") }()
429
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
430
			if i >= items && i < dims[0]-items {
Michael Yang's avatar
Michael Yang committed
431
				sb.WriteString("..., ")
Michael Yang's avatar
Michael Yang committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
Michael Yang's avatar
Michael Yang committed
446
447
448
449
450
451
				text := fn(s[stride+i])
				if len(text) > 0 && text[0] != '-' {
					sb.WriteString(" ")
				}

				sb.WriteString(text)
Michael Yang's avatar
Michael Yang committed
452
				if i < dims[0]-1 {
Michael Yang's avatar
Michael Yang committed
453
					sb.WriteString(", ")
Michael Yang's avatar
Michael Yang committed
454
455
456
457
458
459
460
461
462
463
464
465
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
466
467
468
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
469
470
	DTypeQ80
	DTypeQ40
Michael Yang's avatar
Michael Yang committed
471
	DTypeI32
Michael Yang's avatar
Michael Yang committed
472
	DTypeMXFP4
Michael Yang's avatar
Michael Yang committed
473
)