convert.go 4.96 KB
Newer Older
1
2
3
4
5
6
7
package convert

import (
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
Michael Yang's avatar
Michael Yang committed
8
	"io"
9
10
11
12
	"log/slog"
	"os"
	"path/filepath"
	"slices"
13
	"strings"
14
15
16

	"google.golang.org/protobuf/proto"

17
18
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
19
20
21
)

type Params struct {
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
	Architectures     []string `json:"architectures"`
	VocabSize         int      `json:"vocab_size"`
	HiddenSize        int      `json:"hidden_size"`       // n_embd
	HiddenLayers      int      `json:"num_hidden_layers"` // n_layer
	ContextSize       int      `json:"max_position_embeddings"`
	IntermediateSize  int      `json:"intermediate_size"`
	AttentionHeads    int      `json:"num_attention_heads"` // n_head
	KeyValHeads       int      `json:"num_key_value_heads"`
	NormEPS           float64  `json:"rms_norm_eps"`
	BoSTokenID        int      `json:"bos_token_id"`
	EoSTokenID        int      `json:"eos_token_id"`
	HeadDimension     int      `json:"head_dim"`
	PaddingTokenID    int      `json:"pad_token_id"`
	RopeFrequencyBase float64  `json:"rope_theta"`

	Experts     int `json:"num_local_experts"`
	ExpertsUsed int `json:"num_experts_per_tok"`
39
40
41
42
43
44
45

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
46
47
}

48
49
50
type ModelArch interface {
	GetTensors() error
	LoadVocab() error
Michael Yang's avatar
Michael Yang committed
51
	WriteGGUF(io.WriteSeeker) error
52
53
}

54
55
56
57
58
59
60
type ModelFormat interface {
	GetLayerName(string) (string, error)
	GetTensors(string, *Params) ([]llm.Tensor, error)
	GetParams(string) (*Params, error)
	GetModelArch(string, string, *Params) (ModelArch, error)
}

61
62
63
64
65
66
type ModelData struct {
	Path    string
	Name    string
	Params  *Params
	Vocab   *Vocab
	Tensors []llm.Tensor
67
	Format  ModelFormat
68
69
}

70
71
func GetModelFormat(dirname string) (ModelFormat, error) {
	files, err := filepath.Glob(filepath.Join(dirname, "*"))
72
	if err != nil {
73
		return nil, err
74
75
	}

76
77
78
79
	for _, fn := range files {
		slog.Debug(fmt.Sprintf("file = %s", fn))
		if strings.HasSuffix(fn, ".safetensors") {
			return &SafetensorFormat{}, nil
Patrick Devine's avatar
Patrick Devine committed
80
81
		//} else if strings.HasSuffix(fn, ".bin") {
		} else if strings.HasSuffix(fn, ".pth") {
82
83
			slog.Debug("model is torch")
			return &TorchFormat{}, nil
84
85
86
		}
	}

87
	return nil, fmt.Errorf("couldn't determine model format")
88
89
90
91
92
93
94
95
96
97
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

98
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
123
124
125
126
127
128
129
130
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

178
179
	if params.VocabSize > len(v.Tokens) {
		missingTokens := params.VocabSize - len(v.Tokens)
180
181
182
183
184
185
186
187
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
		}
	}

188
189
	return v, nil
}