convert.go 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
package convert

import (
	"bytes"
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"regexp"
	"slices"

16
	"github.com/d4l3k/go-bfloat16"
17
	"github.com/mitchellh/mapstructure"
18
	"github.com/x448/float16"
19
20
	"google.golang.org/protobuf/proto"

21
22
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
23
24
25
26
27
28
29
30
31
32
33
34
35
36
)

type Params struct {
	Architectures    []string `json:"architectures"`
	VocabSize        int      `json:"vocab_size"`
	HiddenSize       int      `json:"hidden_size"`       // n_embd
	HiddenLayers     int      `json:"num_hidden_layers"` // n_layer
	ContextSize      int      `json:"max_position_embeddings"`
	IntermediateSize int      `json:"intermediate_size"`
	AttentionHeads   int      `json:"num_attention_heads"` // n_head
	KeyValHeads      int      `json:"num_key_value_heads"`
	NormEPS          float64  `json:"rms_norm_eps"`
	BoSTokenID       int      `json:"bos_token_id"`
	EoSTokenID       int      `json:"eos_token_id"`
37
38
39
40
41
42
43
44
45
	HeadDimension    int      `json:"head_dim"`
	PaddingTokenID   int      `json:"pad_token_id"`

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
46
47
48
49
50
51
52
53
}

type MetaData struct {
	Type    string `mapstructure:"dtype"`
	Shape   []int  `mapstructure:"shape"`
	Offsets []int  `mapstructure:"data_offsets"`
}

54
55
56
57
58
59
60
61
62
63
64
65
66
67
type ModelArch interface {
	GetTensors() error
	LoadVocab() error
	WriteGGUF() (string, error)
}

type ModelData struct {
	Path    string
	Name    string
	Params  *Params
	Vocab   *Vocab
	Tensors []llm.Tensor
}

68
func ReadSafeTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
69
70
	f, err := os.Open(fn)
	if err != nil {
71
		return nil, 0, err
72
73
74
75
	}
	defer f.Close()

	var jsonSize uint64
76
77
78
	if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
		return nil, 0, err
	}
79
80
81
82

	buf := make([]byte, jsonSize)
	_, err = io.ReadFull(f, buf)
	if err != nil {
83
		return nil, 0, err
84
85
86
87
88
89
	}

	d := json.NewDecoder(bytes.NewBuffer(buf))
	d.UseNumber()
	var parsed map[string]interface{}
	if err = d.Decode(&parsed); err != nil {
90
		return nil, 0, err
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
	}

	var keys []string
	for k := range parsed {
		keys = append(keys, k)
	}

	slices.Sort(keys)

	slog.Info("converting layers")

	var tensors []llm.Tensor
	for _, k := range keys {
		vals := parsed[k].(map[string]interface{})
		var data MetaData
		if err = mapstructure.Decode(vals, &data); err != nil {
107
			return nil, 0, err
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
		}

		var size uint64
		var kind uint32
		switch len(data.Shape) {
		case 0:
			// metadata
			continue
		case 1:
			// convert to float32
			kind = 0
			size = uint64(data.Shape[0] * 4)
		case 2:
			// convert to float16
			kind = 1
			size = uint64(data.Shape[0] * data.Shape[1] * 2)
		}

		ggufName, err := GetTensorName(k)
		if err != nil {
			slog.Error("%v", err)
129
			return nil, 0, err
130
131
		}

Michael Yang's avatar
Michael Yang committed
132
133
134
		shape := []uint64{0, 0, 0, 0}
		for i := range data.Shape {
			shape[i] = uint64(data.Shape[i])
135
136
137
		}

		t := llm.Tensor{
138
139
140
141
			Name:   ggufName,
			Kind:   kind,
			Offset: offset,
			Shape:  shape[:],
142
		}
143
144

		t.WriterTo = safetensorWriterTo{
145
146
147
148
149
150
151
			t:        &t,
			params:   params,
			bo:       params.ByteOrder,
			filename: fn,
			start:    uint64(data.Offsets[0]),
			end:      uint64(data.Offsets[1]),
			padding:  8 + jsonSize,
152
153
		}

154
155
156
157
158
159
160
		slog.Debug(fmt.Sprintf("%v", t))
		tensors = append(tensors, t)
		offset += size
	}
	return tensors, offset, nil
}

161
func GetSafeTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
162
163
164
	var tensors []llm.Tensor
	files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
	if err != nil {
165
		return nil, err
166
167
168
169
170
171
	}

	var offset uint64
	for _, f := range files {
		var t []llm.Tensor
		var err error
172
		t, offset, err = ReadSafeTensors(f, offset, params)
173
174
		if err != nil {
			slog.Error("%v", err)
175
			return nil, err
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
		}
		tensors = append(tensors, t...)
	}
	return tensors, nil
}

func GetParams(dirpath string) (*Params, error) {
	f, err := os.Open(filepath.Join(dirpath, "config.json"))
	if err != nil {
		return nil, err
	}
	defer f.Close()

	var params Params

	d := json.NewDecoder(f)
	err = d.Decode(&params)
	if err != nil {
		return nil, err
	}

197
	params.ByteOrder = binary.LittleEndian
198
199
200
201
202
203
204
205
206
207
208
	return &params, nil
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

209
func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
234
235
236
237
238
239
240
241
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

289
290
	if vocabSize > len(v.Tokens) {
		missingTokens := vocabSize - len(v.Tokens)
291
292
293
294
295
296
297
298
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
		}
	}

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
	return v, nil
}

func GetTensorName(n string) (string, error) {
	tMap := map[string]string{
		"model.embed_tokens.weight":                           "token_embd.weight",
		"model.layers.(\\d+).input_layernorm.weight":          "blk.$1.attn_norm.weight",
		"model.layers.(\\d+).mlp.down_proj.weight":            "blk.$1.ffn_down.weight",
		"model.layers.(\\d+).mlp.gate_proj.weight":            "blk.$1.ffn_gate.weight",
		"model.layers.(\\d+).mlp.up_proj.weight":              "blk.$1.ffn_up.weight",
		"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
		"model.layers.(\\d+).self_attn.k_proj.weight":         "blk.$1.attn_k.weight",
		"model.layers.(\\d+).self_attn.o_proj.weight":         "blk.$1.attn_output.weight",
		"model.layers.(\\d+).self_attn.q_proj.weight":         "blk.$1.attn_q.weight",
		"model.layers.(\\d+).self_attn.v_proj.weight":         "blk.$1.attn_v.weight",
		"lm_head.weight":    "output.weight",
		"model.norm.weight": "output_norm.weight",
	}

	v, ok := tMap[n]
	if ok {
		return v, nil
	}

	// quick hack to rename the layers to gguf format
	for k, v := range tMap {
		re := regexp.MustCompile(k)
		newName := re.ReplaceAllString(n, v)
		if newName != n {
			return newName, nil
		}
	}

	return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}

335
336
337
type safetensorWriterTo struct {
	t *llm.Tensor

338
339
	params *Params
	bo     ByteOrder
340
341
342
343

	filename string

	start, end, padding uint64
344
	handler             func(w io.Writer, r safetensorWriterTo, f *os.File) error
345
346
347
348
349
350
351
352
353
354
355
356
357
}

func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
	f, err := os.Open(r.filename)
	if err != nil {
		return 0, err
	}
	defer f.Close()

	if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
		return 0, err
	}

358
359
360
	// use the handler if one is present
	if r.handler != nil {
		return 0, r.handler(w, r, f)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
	}

	remaining := r.end - r.start

	bufSize := uint64(10240)
	var finished bool
	for {
		data := make([]byte, min(bufSize, remaining))

		b, err := io.ReadFull(f, data)
		remaining -= uint64(b)

		if err == io.EOF || remaining <= 0 {
			finished = true
		} else if err != nil {
			return 0, err
		}

		// convert bfloat16 -> ieee float32
		tDataF32 := bfloat16.DecodeFloat32(data)

		switch r.t.Kind {
		case 0:
			if err := binary.Write(w, r.bo, tDataF32); err != nil {
				return 0, err
			}
		case 1:
			// convert float32 -> float16
			tempBuf := make([]uint16, len(data)/2)
			for cnt, v := range tDataF32 {
				tDataF16 := float16.Fromfloat32(v)
				tempBuf[cnt] = uint16(tDataF16)
			}
			if err := binary.Write(w, binary.LittleEndian, tempBuf); err != nil {
				return 0, err
			}
		}
		if finished {
			break
		}
	}
	return 0, nil
}

405
func GetModelArchFromParams(name, dirPath string, params *Params) (ModelArch, error) {
406
407
	switch len(params.Architectures) {
	case 0:
408
		return nil, fmt.Errorf("No architecture specified to convert")
409
410
411
	case 1:
		switch params.Architectures[0] {
		case "MistralForCausalLM":
412
413
414
415
416
417
418
			return &MistralModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
				},
			}, nil
419
		case "GemmaForCausalLM":
420
421
422
423
424
425
426
			return &GemmaModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
				},
			}, nil
427
		default:
428
			return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
429
		}
430
431
	}

432
	return nil, fmt.Errorf("Unknown error")
433
}