convert.go 9.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
package convert

import (
	"bytes"
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"regexp"
	"slices"

	"github.com/mitchellh/mapstructure"
	"google.golang.org/protobuf/proto"

19
20
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
)

type Params struct {
	Architectures    []string `json:"architectures"`
	VocabSize        int      `json:"vocab_size"`
	HiddenSize       int      `json:"hidden_size"`       // n_embd
	HiddenLayers     int      `json:"num_hidden_layers"` // n_layer
	ContextSize      int      `json:"max_position_embeddings"`
	IntermediateSize int      `json:"intermediate_size"`
	AttentionHeads   int      `json:"num_attention_heads"` // n_head
	KeyValHeads      int      `json:"num_key_value_heads"`
	NormEPS          float64  `json:"rms_norm_eps"`
	RopeFreqBase     float64  `json:"rope_theta"`
	BoSTokenID       int      `json:"bos_token_id"`
	EoSTokenID       int      `json:"eos_token_id"`
}

type MetaData struct {
	Type    string `mapstructure:"dtype"`
	Shape   []int  `mapstructure:"shape"`
	Offsets []int  `mapstructure:"data_offsets"`
}

func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
	f, err := os.Open(fn)
	if err != nil {
		return []llm.Tensor{}, 0, err
	}
	defer f.Close()

	var jsonSize uint64
	binary.Read(f, binary.LittleEndian, &jsonSize)

	buf := make([]byte, jsonSize)
	_, err = io.ReadFull(f, buf)
	if err != nil {
		return []llm.Tensor{}, 0, err
	}

	d := json.NewDecoder(bytes.NewBuffer(buf))
	d.UseNumber()
	var parsed map[string]interface{}
	if err = d.Decode(&parsed); err != nil {
		return []llm.Tensor{}, 0, err
	}

	var keys []string
	for k := range parsed {
		keys = append(keys, k)
	}

	slices.Sort(keys)

	slog.Info("converting layers")

	var tensors []llm.Tensor
	for _, k := range keys {
		vals := parsed[k].(map[string]interface{})
		var data MetaData
		if err = mapstructure.Decode(vals, &data); err != nil {
			return []llm.Tensor{}, 0, err
		}

		var size uint64
		var kind uint32
		switch len(data.Shape) {
		case 0:
			// metadata
			continue
		case 1:
			// convert to float32
			kind = 0
			size = uint64(data.Shape[0] * 4)
		case 2:
			// convert to float16
			kind = 1
			size = uint64(data.Shape[0] * data.Shape[1] * 2)
		}

		ggufName, err := GetTensorName(k)
		if err != nil {
			slog.Error("%v", err)
			return []llm.Tensor{}, 0, err
		}

Michael Yang's avatar
Michael Yang committed
106
107
108
		shape := []uint64{0, 0, 0, 0}
		for i := range data.Shape {
			shape[i] = uint64(data.Shape[i])
109
110
111
112
113
114
		}

		t := llm.Tensor{
			Name:          ggufName,
			Kind:          kind,
			Offset:        offset,
Michael Yang's avatar
Michael Yang committed
115
			Shape:         shape[:],
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
			FileName:      fn,
			OffsetPadding: 8 + jsonSize,
			FileOffsets:   []uint64{uint64(data.Offsets[0]), uint64(data.Offsets[1])},
		}
		slog.Debug(fmt.Sprintf("%v", t))
		tensors = append(tensors, t)
		offset += size
	}
	return tensors, offset, nil
}

func GetSafeTensors(dirpath string) ([]llm.Tensor, error) {
	var tensors []llm.Tensor
	files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
	if err != nil {
		return []llm.Tensor{}, err
	}

	var offset uint64
	for _, f := range files {
		var t []llm.Tensor
		var err error
		t, offset, err = ReadSafeTensors(f, offset)
		if err != nil {
			slog.Error("%v", err)
			return []llm.Tensor{}, err
		}
		tensors = append(tensors, t...)
	}
	return tensors, nil
}

func GetParams(dirpath string) (*Params, error) {
	f, err := os.Open(filepath.Join(dirpath, "config.json"))
	if err != nil {
		return nil, err
	}
	defer f.Close()

	var params Params

	d := json.NewDecoder(f)
	err = d.Decode(&params)
	if err != nil {
		return nil, err
	}

	return &params, nil
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

func LoadTokens(dirpath string) (*Vocab, error) {
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

	return v, nil
}

func GetTensorName(n string) (string, error) {
	tMap := map[string]string{
		"model.embed_tokens.weight":                           "token_embd.weight",
		"model.layers.(\\d+).input_layernorm.weight":          "blk.$1.attn_norm.weight",
		"model.layers.(\\d+).mlp.down_proj.weight":            "blk.$1.ffn_down.weight",
		"model.layers.(\\d+).mlp.gate_proj.weight":            "blk.$1.ffn_gate.weight",
		"model.layers.(\\d+).mlp.up_proj.weight":              "blk.$1.ffn_up.weight",
		"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
		"model.layers.(\\d+).self_attn.k_proj.weight":         "blk.$1.attn_k.weight",
		"model.layers.(\\d+).self_attn.o_proj.weight":         "blk.$1.attn_output.weight",
		"model.layers.(\\d+).self_attn.q_proj.weight":         "blk.$1.attn_q.weight",
		"model.layers.(\\d+).self_attn.v_proj.weight":         "blk.$1.attn_v.weight",
		"lm_head.weight":    "output.weight",
		"model.norm.weight": "output_norm.weight",
	}

	v, ok := tMap[n]
	if ok {
		return v, nil
	}

	// quick hack to rename the layers to gguf format
	for k, v := range tMap {
		re := regexp.MustCompile(k)
		newName := re.ReplaceAllString(n, v)
		if newName != n {
			return newName, nil
		}
	}

	return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}

func WriteGGUF(name string, tensors []llm.Tensor, params *Params, vocab *Vocab) (string, error) {
	c := llm.ContainerGGUF{
		ByteOrder: binary.LittleEndian,
	}

	m := llm.NewGGUFModel(&c)
	m.Tensors = tensors
	m.KV["general.architecture"] = "llama"
	m.KV["general.name"] = name
	m.KV["llama.context_length"] = uint32(params.ContextSize)
	m.KV["llama.embedding_length"] = uint32(params.HiddenSize)
	m.KV["llama.block_count"] = uint32(params.HiddenLayers)
	m.KV["llama.feed_forward_length"] = uint32(params.IntermediateSize)
	m.KV["llama.rope.dimension_count"] = uint32(128)
	m.KV["llama.attention.head_count"] = uint32(params.AttentionHeads)
	m.KV["llama.attention.head_count_kv"] = uint32(params.KeyValHeads)
	m.KV["llama.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
	m.KV["llama.rope.freq_base"] = float32(params.RopeFreqBase)
	m.KV["general.file_type"] = uint32(1)
	m.KV["tokenizer.ggml.model"] = "llama"

	m.KV["tokenizer.ggml.tokens"] = vocab.Tokens
	m.KV["tokenizer.ggml.scores"] = vocab.Scores
	m.KV["tokenizer.ggml.token_type"] = vocab.Types

	m.KV["tokenizer.ggml.bos_token_id"] = uint32(params.BoSTokenID)
	m.KV["tokenizer.ggml.eos_token_id"] = uint32(params.EoSTokenID)
	m.KV["tokenizer.ggml.unknown_token_id"] = uint32(0)
	m.KV["tokenizer.ggml.add_bos_token"] = true
	m.KV["tokenizer.ggml.add_eos_token"] = false

	// llamacpp sets the chat template, however we don't need to set it since we pass it in through a layer
	// m.KV["tokenizer.chat_template"] = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" // XXX removeme

	c.V3.NumTensor = uint64(len(tensors))
	c.V3.NumKV = uint64(len(m.KV))

	f, err := os.CreateTemp("", "ollama-gguf")
	if err != nil {
		return "", err
	}
	defer f.Close()

	err = m.Encode(f)
	if err != nil {
		return "", err
	}

	return f.Name(), nil
}