"vscode:/vscode.git/clone" did not exist on "cf6ce7c77514189fd021f191603611e4d47a72b9"
convert.go 4.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
package convert

import (
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"log/slog"
	"os"
	"path/filepath"
	"slices"
12
	"strings"
13
14
15

	"google.golang.org/protobuf/proto"

16
17
	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
)

type Params struct {
	Architectures    []string `json:"architectures"`
	VocabSize        int      `json:"vocab_size"`
	HiddenSize       int      `json:"hidden_size"`       // n_embd
	HiddenLayers     int      `json:"num_hidden_layers"` // n_layer
	ContextSize      int      `json:"max_position_embeddings"`
	IntermediateSize int      `json:"intermediate_size"`
	AttentionHeads   int      `json:"num_attention_heads"` // n_head
	KeyValHeads      int      `json:"num_key_value_heads"`
	NormEPS          float64  `json:"rms_norm_eps"`
	BoSTokenID       int      `json:"bos_token_id"`
	EoSTokenID       int      `json:"eos_token_id"`
32
33
34
35
36
37
38
39
40
	HeadDimension    int      `json:"head_dim"`
	PaddingTokenID   int      `json:"pad_token_id"`

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
41
42
}

43
44
45
46
47
48
type ModelArch interface {
	GetTensors() error
	LoadVocab() error
	WriteGGUF() (string, error)
}

49
50
51
52
53
54
55
type ModelFormat interface {
	GetLayerName(string) (string, error)
	GetTensors(string, *Params) ([]llm.Tensor, error)
	GetParams(string) (*Params, error)
	GetModelArch(string, string, *Params) (ModelArch, error)
}

56
57
58
59
60
61
type ModelData struct {
	Path    string
	Name    string
	Params  *Params
	Vocab   *Vocab
	Tensors []llm.Tensor
62
	Format  ModelFormat
63
64
}

65
66
func GetModelFormat(dirname string) (ModelFormat, error) {
	files, err := filepath.Glob(filepath.Join(dirname, "*"))
67
	if err != nil {
68
		return nil, err
69
70
	}

71
72
73
74
75
76
77
	for _, fn := range files {
		slog.Debug(fmt.Sprintf("file = %s", fn))
		if strings.HasSuffix(fn, ".safetensors") {
			return &SafetensorFormat{}, nil
		} else if strings.HasSuffix(fn, ".bin") {
			slog.Debug("model is torch")
			return &TorchFormat{}, nil
78
79
80
		}
	}

81
	return nil, fmt.Errorf("couldn't determine model format")
82
83
84
85
86
87
88
89
90
91
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
}

92
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
117
118
119
120
121
122
123
124
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

172
173
	if params.VocabSize > len(v.Tokens) {
		missingTokens := params.VocabSize - len(v.Tokens)
174
175
176
177
178
179
180
181
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
		}
	}

182
183
	return v, nil
}