"vscode:/vscode.git/clone" did not exist on "3e06bc6f2ddd56cd713229a7f0404ff56cabda47"
llama-graph.cpp 68.4 KB
Newer Older
1
2
3
4
5
#include "llama-graph.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
6

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7
8
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
9
10
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <cassert>
#include <cmath>
#include <cstring>

void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
    if (ubatch->token) {
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
    }

    if (ubatch->embd) {
        const int64_t n_embd   = embd->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
    }
}

31
32
33
34
35
36
37
38
39
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
    res &= (!embd   && !params.ubatch.embd)  || (embd   &&   embd->ne[0] == params.ubatch.n_tokens);

    return res;
}

40
41
42
43
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && pos) {
        const int64_t n_tokens = ubatch->n_tokens;

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        if (ubatch->token && n_pos_per_embd == 4) {
            // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
            // the 3 first dims are the same, and 4th dim is all 0
            std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
            // copy the first dimension
            for (int i = 0; i < n_tokens; ++i) {
                pos_data[               i] = ubatch->pos[i];
                pos_data[    n_tokens + i] = ubatch->pos[i];
                pos_data[2 * n_tokens + i] = ubatch->pos[i];
                pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
            }
            ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
        } else {
            ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
        }
59
60
61
    }
}

62
63
64
65
66
67
68
69
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= pos->ne[0] == params.ubatch.n_tokens;

    return res;
}

70
71
72
73
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && attn_scale) {
        const int64_t n_tokens = ubatch->n_tokens;

74
75
76
        GGML_ASSERT(f_attn_temp_scale != 0.0f);
        GGML_ASSERT(n_attn_temp_floor_scale != 0);

77
78
79
80
81
82
83
84
        std::vector<float> attn_scale_data(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const float pos = ubatch->pos[i];
            attn_scale_data[i] = std::log(
                std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
            ) * f_attn_temp_scale + 1.0;
        }

85
        ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
86
87
88
89
90
91
92
93
    }
}

void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
94
        GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        int32_t * data = (int32_t *) pos_bucket->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
                }
            }
        }
    }
}

void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
110
111
112
        mctx->set_input_pos_bucket(pos_bucket, ubatch);
    }
}
113

114
115
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(out_ids);
116

117
    const int64_t n_tokens = ubatch->n_tokens;
118

119
120
    GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
    int32_t * data = (int32_t *) out_ids->data;
121

122
123
124
    if (n_outputs == n_tokens) {
        for (int i = 0; i < n_tokens; ++i) {
            data[i] = i;
125
126
        }

127
128
        return;
    }
129

130
    GGML_ASSERT(ubatch->output);
131

132
    int n_outputs = 0;
133

134
135
136
    for (int i = 0; i < n_tokens; ++i) {
        if (ubatch->output[i]) {
            data[n_outputs++] = i;
137
138
139
140
        }
    }
}

141
142
143
144
145
146
147
148
bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= n_outputs == params.n_outputs;

    return res;
}

149
150
151
152
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
153
        const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
154
155
156
157
158

        GGML_ASSERT(mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));

        float * data = (float *) mean->data;
159
        memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
160

161
162
163
164
165
        std::vector<uint64_t> sums(n_seqs_unq, 0);
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
166

167
                sums[seq_idx] += ubatch->n_seq_tokens;
168
169
170
            }
        }

171
172
173
174
175
        std::vector<float> div(n_seqs_unq, 0.0f);
        for (int s = 0; s < n_seqs_unq; ++s) {
            const uint64_t sum = sums[s];
            if (sum > 0) {
                div[s] = 1.0f/float(sum);
176
177
178
            }
        }

179
180
181
182
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
183

184
185
                for (int j = 0; j < n_seq_tokens; ++j) {
                    data[seq_idx*n_tokens + i + j] = div[seq_idx];
186
187
188
189
                }
            }
        }
    }
190
}
191

192
193
194
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
    const int64_t n_tokens     = ubatch->n_tokens;
    const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
195

196
197
198
199
200
    if (cparams.embeddings && (
        cparams.pooling_type == LLAMA_POOLING_TYPE_CLS  ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
    )) {
201
202
203
204
        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
205
        memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
206

207
208
        std::vector<int> target_pos(n_seqs_unq, -1);
        std::vector<int> target_row(n_seqs_unq, -1);
209

Daniel Hiltgen's avatar
Daniel Hiltgen committed
210
211
212
213
        const bool last = (
             cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
            (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
        );
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
        for (int i = 0; i < n_tokens; ++i) {
            const llama_pos pos = ubatch->pos[i];

            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];

                if (
                    (target_pos[seq_idx] == -1) ||
                    ( last && pos >= target_pos[seq_idx]) ||
                    (!last && pos <  target_pos[seq_idx])
                ) {
                    target_pos[seq_idx] = pos;
                    target_row[seq_idx] = i;
229
230
231
232
                }
            }
        }

233
234
235
        for (int s = 0; s < n_seqs_unq; ++s) {
            if (target_row[s] >= 0) {
                data[s] = target_row[s];
236
237
238
239
240
            }
        }
    }
}

241
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
242
243
    GGML_UNUSED(ubatch);

244
    const int64_t n_rs = mctx->get_n_rs();
245
246
247
248
249
250

    if (s_copy) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
        int32_t * data = (int32_t *) s_copy->data;

        // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
251
252
        for (uint32_t i = 0; i < n_rs; ++i) {
            data[i] = mctx->s_copy(i);
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        }
    }
}

void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (cross_embd && !cross->v_embd.empty()) {
        assert(cross_embd->type == GGML_TYPE_F32);

        ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
267
static void print_mask(const float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
268
    LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
269
270
271
272
273
274
275
276
277
    const char * swa_type_str = "unknown";

    switch (swa_type) {
        case LLAMA_SWA_TYPE_NONE:      swa_type_str = "LLAMA_SWA_TYPE_NONE"; break;
        case LLAMA_SWA_TYPE_STANDARD:  swa_type_str = "LLAMA_SWA_TYPE_STANDARD"; break;
        case LLAMA_SWA_TYPE_CHUNKED:   swa_type_str = "LLAMA_SWA_TYPE_CHUNKED"; break;
        case LLAMA_SWA_TYPE_SYMMETRIC: swa_type_str = "LLAMA_SWA_TYPE_SYMMETRIC"; break;
    };

Daniel Hiltgen's avatar
Daniel Hiltgen committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
    LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
    LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);

    LLAMA_LOG_DEBUG("    ");
    for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
        LLAMA_LOG_DEBUG("%2d", j);
    }
    LLAMA_LOG_DEBUG("\n");

    for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
        LLAMA_LOG_DEBUG(" %2d ", i);
        for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
            float val = data[i * n_kv + j];
            if (val == -INFINITY) {
                LLAMA_LOG_DEBUG(" ∞");
            } else {
                LLAMA_LOG_DEBUG(" 0");
            }
        }
        LLAMA_LOG_DEBUG("\n");
    }
}

302
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
303
304
305
    const int64_t n_kv     = ubatch->n_tokens;
    const int64_t n_tokens = ubatch->n_tokens;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
306
307
308
309
310
    const auto fill_mask = [&](float * data, int n_swa, llama_swa_type swa_type) {
        for (int h = 0; h < 1; ++h) {
            for (int i1 = 0; i1 < n_tokens; ++i1) {
                const llama_seq_id s1 = ubatch->seq_id[i1][0];
                const llama_pos    p1 = ubatch->pos[i1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
311

Daniel Hiltgen's avatar
Daniel Hiltgen committed
312
                const uint64_t idst = h*(n_kv*n_tokens) + i1*n_kv;
313

Daniel Hiltgen's avatar
Daniel Hiltgen committed
314
                for (int i0 = 0; i0 < n_tokens; ++i0) {
315
                    const llama_seq_id s0 = ubatch->seq_id[i0][0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
                    const llama_pos p0    = ubatch->pos[i0];
317

Daniel Hiltgen's avatar
Daniel Hiltgen committed
318
                    // mask different sequences
Daniel Hiltgen's avatar
Daniel Hiltgen committed
319
                    if (s0 != s1) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
320
                        continue;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
321
322
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
323
324
325
                    // mask future tokens
                    if (cparams.causal_attn && p0 > p1) {
                        continue;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
326
327
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
328
329
330
                    // apply SWA if any
                    if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
                        continue;
331
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
332
333

                    data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
334
335
336
                }
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    };

    {
        GGML_ASSERT(self_kq_mask);
        GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));

        float * data = (float *) self_kq_mask->data;

        std::fill(data, data + ggml_nelements(self_kq_mask), -INFINITY);

        fill_mask(data, 0, LLAMA_SWA_TYPE_NONE);

        if (debug) {
            print_mask(data, n_tokens, n_kv, 0, LLAMA_SWA_TYPE_NONE);
        }
352
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
        GGML_ASSERT(self_kq_mask_swa);
        GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));

        float * data = (float *) self_kq_mask_swa->data;

        std::fill(data, data + ggml_nelements(self_kq_mask_swa), -INFINITY);

        fill_mask(data, hparams.n_swa, hparams.swa_type);

        if (debug) {
            print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
367
    }
368
369
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
370
void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
371
372
    mctx->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->set_input_v_idxs(self_v_idxs, ubatch);
373

374
375
    mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
376

Daniel Hiltgen's avatar
Daniel Hiltgen committed
377
378
bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
379

380
    this->mctx = mctx;
381

382
    bool res = true;
383

384
385
    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
386

387
388
    res &= self_kq_mask->ne[0] == mctx->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
389

390
391
392
    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
393
void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
394
395
396
397
398
399
400
401
402
403
    mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);

    mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);

    mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
    mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);

    mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
}
404

Daniel Hiltgen's avatar
Daniel Hiltgen committed
405
406
bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

    this->mctx = mctx;

    bool res = true;

    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
    res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    return res;
}

void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(cross_kq_mask);

    const int64_t n_enc    = cross_kq_mask->ne[0];
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    float * data = (float *) cross_kq_mask->data;

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_enc; ++j) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                    const llama_seq_id seq_id = ubatch->seq_id[i][s];

                    if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
                        f = 0.0f;
448
449
                    }
                }
450
451

                data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
452
            }
453
        }
454

455
456
457
        for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
            for (int j = 0; j < n_enc; ++j) {
                data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
458
459
460
461
462
            }
        }
    }
}

463
464
465
466
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
    inp_attn->set_input(ubatch);
    inp_rs->set_input(ubatch);
}
467

468
469
470
//
// llm_graph_result
//
471

472
473
llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
    reset();
474

475
476
477
    const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
    debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
}
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
int64_t llm_graph_result::get_max_nodes() const {
    return max_nodes;
}

void llm_graph_result::reset() {
    t_tokens      = nullptr;
    t_logits      = nullptr;
    t_embd        = nullptr;
    t_embd_pooled = nullptr;

    params = {};

    inputs.clear();

    buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
}

void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
    for (auto & input : inputs) {
        input->set_input(ubatch);
    }
}

bool llm_graph_result::can_reuse(const llm_graph_params & params) {
    if (!this->params.allow_reuse(params)) {
        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
516
        }
517
518

        return false;
519
    }
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

    if (debug > 1) {
        LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
    }

    bool res = true;

    for (auto & input : inputs) {
        const bool cur = input->can_reuse(params);

        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
        }

        res = res && cur;
    }

    if (debug > 0) {
        LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
    }

    return res;
}

llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
    inputs.emplace_back(std::move(input));
    return inputs.back().get();
}

void llm_graph_result::set_params(const llm_graph_params & params) {
    this->params = params;
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
}

//
// llm_graph_context
//

llm_graph_context::llm_graph_context(const llm_graph_params & params) :
    arch             (params.arch),
    hparams          (params.hparams),
    cparams          (params.cparams),
    ubatch           (params.ubatch),
    n_embd           (hparams.n_embd),
    n_layer          (hparams.n_layer),
    n_rot            (hparams.n_rot),
    n_ctx            (cparams.n_ctx),
    n_head           (hparams.n_head()),
    n_head_kv        (hparams.n_head_kv()),
    n_embd_head_k    (hparams.n_embd_head_k),
    n_embd_k_gqa     (hparams.n_embd_k_gqa()),
    n_embd_head_v    (hparams.n_embd_head_v),
    n_embd_v_gqa     (hparams.n_embd_v_gqa()),
    n_expert         (hparams.n_expert),
    n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
    freq_base        (cparams.rope_freq_base),
    freq_scale       (cparams.rope_freq_scale),
    ext_factor       (cparams.yarn_ext_factor),
    attn_factor      (cparams.yarn_attn_factor),
    beta_fast        (cparams.yarn_beta_fast),
    beta_slow        (cparams.yarn_beta_slow),
    norm_eps         (hparams.f_norm_eps),
    norm_rms_eps     (hparams.f_norm_rms_eps),
    n_tokens         (ubatch.n_tokens),
    n_outputs        (params.n_outputs),
    n_ctx_orig       (cparams.n_ctx_orig_yarn),
    pooling_type     (cparams.pooling_type),
    rope_type        (hparams.rope_type),
    sched            (params.sched),
    backend_cpu      (params.backend_cpu),
    cvec             (params.cvec),
    loras            (params.loras),
591
    mctx             (params.mctx),
592
593
    cross            (params.cross),
    cb_func          (params.cb),
594
595
596
597
    res              (params.res),
    ctx0             (res->get_ctx()),
    gf               (res->get_gf()) {
        res->set_params(params);
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    }

void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
    if (cb_func) {
        cb_func(ubatch, cur, name, il);
    }
}

ggml_tensor * llm_graph_context::build_cvec(
         ggml_tensor * cur,
                 int   il) const {
    return cvec->apply_to(ctx0, cur, il);
}

ggml_tensor * llm_graph_context::build_lora_mm(
          ggml_tensor * w,
          ggml_tensor * cur) const {
    ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);

    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float adapter_scale = lora.second;
        const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

        ggml_tensor * ab_cur = ggml_mul_mat(
                ctx0, lw->b,
                ggml_mul_mat(ctx0, lw->a, cur)
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_lora_mm_id(
          ggml_tensor * w,   // ggml_tensor * as
          ggml_tensor * cur, // ggml_tensor * b
          ggml_tensor * ids) const {
    ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float alpha = lora.first->alpha;
        const float rank  = (float) lw->b->ne[0];
        const float scale = alpha ? lora.second * alpha / rank : lora.second;

        ggml_tensor * ab_cur = ggml_mul_mat_id(
                ctx0, lw->b,
                ggml_mul_mat_id(ctx0, lw->a, cur, ids),
                ids
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_norm(
         ggml_tensor * cur,
         ggml_tensor * mw,
         ggml_tensor * mb,
       llm_norm_type   type,
                 int   il) const {
    switch (type) {
        case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
        case LLM_NORM_GROUP:
            {
                cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
                cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
                cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
            } break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx0, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx0, cur, mb);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_ffn(
         ggml_tensor * cur,
         ggml_tensor * up,
         ggml_tensor * up_b,
         ggml_tensor * up_s,
         ggml_tensor * gate,
         ggml_tensor * gate_b,
         ggml_tensor * gate_s,
         ggml_tensor * down,
         ggml_tensor * down_b,
         ggml_tensor * down_s,
         ggml_tensor * act_scales,
     llm_ffn_op_type   type_op,
   llm_ffn_gate_type   type_gate,
                 int   il) const {
    ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx0, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx0, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = build_lora_mm(gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = build_lora_mm(gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx0, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx0, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
759
760
761
762
763
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_swiglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_swiglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
764
765
766
767
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
768
769
770
771
772
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_geglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_geglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
773
774
775
776
777
778
779
780
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx0, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
781
782
783
784
785
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_reglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_reglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
786
787
788
789
790
791
792
793
794
795
796
797
798
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
799
800
801
802
803
804
805
806
807
808
809
810
                cur = ggml_swiglu(ctx0, cur);
                cb(cur, "ffn_swiglu", il);
            } break;
        case LLM_FFN_GEGLU:
            {
                cur = ggml_geglu(ctx0, cur);
                cb(cur, "ffn_geglu", il);
            } break;
        case LLM_FFN_REGLU:
            {
                cur = ggml_reglu(ctx0, cur);
                cb(cur, "ffn_reglu", il);
811
            } break;
812
813
        default:
            GGML_ABORT("fatal error");
814
815
    }

816
    if (gate && type_gate == LLM_FFN_PAR) {
817
818
819
820
821
822
        cur = ggml_mul(ctx0, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = build_lora_mm(down, cur);
823
824
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
825
826
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx0, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx0, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * up_exps,
         ggml_tensor * gate_exps,
         ggml_tensor * down_exps,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
         llama_expert_gating_func_type gating_op,
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
                 int   il,
         ggml_tensor * probs_in) const {
    return build_moe_ffn(
        cur,
        gate_inp,  /* gate_inp_b  */ nullptr,
        up_exps,   /* up_exps_b   */ nullptr,
        gate_exps, /* gate_exps_b */ nullptr,
        down_exps, /* down_exps_b */ nullptr,
        exp_probs_b,
        n_expert,
        n_expert_used,
        type_op,
        norm_w,
        scale_w,
        w_scale,
        gating_op,
        il,
        probs_in
    );
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * gate_inp_b,
         ggml_tensor * up_exps,
         ggml_tensor * up_exps_b,
         ggml_tensor * gate_exps,
         ggml_tensor * gate_exps_b,
         ggml_tensor * down_exps,
         ggml_tensor * down_exps_b,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
        llama_expert_gating_func_type gating_op,
                 int   il,
         ggml_tensor * probs_in) const {
900
901
902
903
    const int64_t n_embd   = cur->ne[0];
    const int64_t n_tokens = cur->ne[1];
    const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN

904
905
906
907
908
909
910
911
912
913
914
915
916
    ggml_tensor * logits = nullptr;

    if (probs_in == nullptr) {
        logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
        cb(logits, "ffn_moe_logits", il);
    } else {
        logits = probs_in;
    }

    if (gate_inp_b) {
        logits = ggml_add(ctx0, logits, gate_inp_b);
        cb(logits, "ffn_moe_logits_biased", il);
    }
917
918
919
920
921
922
923
924
925
926
927

    ggml_tensor * probs = nullptr;
    switch (gating_op) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
            {
                probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
            } break;
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
            {
                probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
            } break;
928
929
930
931
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
            {
                probs = logits; // [n_expert, n_tokens]
            } break;
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
        default:
            GGML_ABORT("fatal error");
    }
    cb(probs, "ffn_moe_probs", il);

    // add experts selection bias - introduced in DeepSeek V3
    // leave probs unbiased as it's later used to get expert weights
    ggml_tensor * selection_probs = probs;
    if (exp_probs_b != nullptr) {
        selection_probs = ggml_add(ctx0, probs, exp_probs_b);
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

    // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
    // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
    if (arch == LLM_ARCH_LLAMA4) {
        selection_probs = logits;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
951
952
953
954
955
    if (arch == LLM_ARCH_GROVEMOE) {
        selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
956
957
958
959
960
961
962
963
    // select top n_group_used expert groups
    // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457
    if (hparams.n_expert_groups > 1 && n_tokens > 0) {
        const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups;

        // organize experts into n_expert_groups
        ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]

Daniel Hiltgen's avatar
Daniel Hiltgen committed
964
        ggml_tensor * group_scores = ggml_argsort_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
965
966
967
968
969
970
        group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]

        // get top n_group_used expert groups
        group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
        group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]

Daniel Hiltgen's avatar
Daniel Hiltgen committed
971
        ggml_tensor * expert_groups = ggml_argsort_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
972
973
974
975
        cb(expert_groups, "ffn_moe_group_topk", il);

        // mask out the other groups
        selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
976
        selection_probs = ggml_set_rows(ctx0, ggml_fill(ctx0, selection_groups, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
977
978
979
980
        selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
        cb(selection_probs, "ffn_moe_probs_masked", il);
    }

981
    // select experts
Daniel Hiltgen's avatar
Daniel Hiltgen committed
982
    ggml_tensor * selected_experts = ggml_argsort_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
983
984
985
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
986
987
988
989
990
991
992
993
994
995
    if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) {
        // TODO: Use scalar div instead when/if implemented
        ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32);
        selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32);
        probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens);
    } else {
        probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens);
    }

    ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens]
996
997
    cb(weights, "ffn_moe_weights", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
998

999
1000
1001
1002
1003
1004
1005
    if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
        weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
        cb(weights, "ffn_moe_weights_softmax", il);
    }

1006
1007
1008
1009
1010
1011
    if (norm_w) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1012
1013
1014
        // Avoid division by zero, clamp to smallest number representable by F16
        weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY);
        cb(weights_sum, "ffn_moe_weights_sum_clamped", il);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx0, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1026
1027
1028
    //call early so that topk-moe can be used
    ggml_build_forward_expand(gf, weights);

1029
1030
1031
    cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);

    if (weight_before_ffn) {
1032
1033
        // repeat cur to [n_embd, n_expert_used, n_tokens]
        ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
1034
1035
1036
1037
1038
1039
1040
        cur = ggml_mul(ctx0, repeated, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

1041
1042
1043
1044
1045
    if (up_exps_b) {
        up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
        cb(up, "ffn_moe_up_biased", il);
    }

1046
1047
1048
1049
1050
1051
1052
    ggml_tensor * experts = nullptr;
    if (gate_exps) {
        cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate", il);
    } else {
        cur = up;
    }
1053

1054
1055
1056
1057
1058
    if (gate_exps_b) {
        cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
        cb(cur, "ffn_moe_gate_biased", il);
    }

1059
1060
    switch (type_op) {
        case LLM_FFN_SILU:
1061
1062
1063
1064
            if (gate_exps) {
                cur = ggml_swiglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_swiglu", il);
            } else {
1065
1066
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_moe_silu", il);
1067
1068
            } break;
        case LLM_FFN_GELU:
1069
1070
1071
1072
            if (gate_exps) {
                cur = ggml_geglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_geglu", il);
            } else {
1073
1074
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_moe_gelu", il);
1075
            } break;
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        case LLM_FFN_SWIGLU_OAI_MOE:
            {
                // TODO: move to hparams?
                constexpr float alpha = 1.702f;
                constexpr float limit = 7.0f;
                cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
                cb(cur, "ffn_moe_swiglu_oai", il);
            } break;
        case LLM_FFN_RELU:
            if (gate_exps) {
                cur = ggml_reglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_reglu", il);
            } else {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_moe_relu", il);
            } break;
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        case LLM_FFN_RELU_SQR:
            if (gate_exps) {
                // TODO: add support for gated squared relu
                GGML_ABORT("fatal error: gated squared relu not implemented");
            } else {
                cur = ggml_relu(ctx0, cur);
                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_moe_relu_sqr", il);
            }
            break;
1102
1103
1104
1105
        default:
            GGML_ABORT("fatal error");
    }

1106
    experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
1107
1108
    cb(experts, "ffn_moe_down", il);

1109
1110
1111
1112
1113
    if (down_exps_b) {
        experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
        cb(experts, "ffn_moe_down_biased", il);
    }

1114
1115
1116
1117
1118
    if (!weight_before_ffn) {
        experts = ggml_mul(ctx0, experts, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };

    assert(n_expert_used > 0);

    // order the views before the adds
    for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
        cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);

        ggml_build_forward_expand(gf, cur_experts[i]);
    }

1130
    // aggregate experts
1131
1132
1133
1134
    // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
    //       to avoid potentially a large number of add nodes during warmup
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14753
    ggml_tensor * moe_out = cur_experts[0];
1135

1136
1137
    for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
        moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
1138
1139
    }

1140
    if (hparams.n_expert_used == 1) {
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx0, moe_out);
    }

    cb(moe_out, "ffn_moe_out", il);

    return moe_out;
}

// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1152
    const int64_t n_embd = hparams.n_embd_inp();
1153
1154
1155
1156
1157
1158
1159
1160
1161

    auto inp = std::make_unique<llm_graph_input_embd>();

    ggml_tensor * cur = nullptr;

    if (ubatch.token) {
        inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
        //cb(inp->tokens, "inp_tokens", -1);
        ggml_set_input(inp->tokens);
1162
        res->t_tokens = inp->tokens;
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

        cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);

        // apply lora for embedding tokens if needed
        for (const auto & lora : *loras) {
            llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
            if (lw == nullptr) {
                continue;
            }

            const float adapter_scale = lora.second;
            const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

            ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
                        ctx0, lw->b, // non-transposed lora_b
                        ggml_get_rows(ctx0, lw->a, inp->tokens)
                        ), scale);

            cur = ggml_add(ctx0, cur, inpL_delta);
        }
    } else {
        inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
        ggml_set_input(inp->embd);

        cur = inp->embd;
    }

    // For Granite architecture
    if (hparams.f_embedding_scale != 0.0f) {
        cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
    }

    cb(cur, "inp_embd", -1);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos() const {
1203
    auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
1204
1205
1206

    auto & cur = inp->pos;

1207
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
1208
1209
1210
1211
1212
1213
1214
1215
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
1216
    auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
1217
1218
1219

    auto & cur = inp->attn_scale;

1220
1221
    // this need to be 1x1xN for broadcasting
    cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
1222
1223
1224
1225
1226
1227
1228
1229
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_out_ids() const {
1230
1231
1232
1233
1234
1235
1236
1237
    // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
    //       but this would make the graph topology depend on the number of output tokens, which can interere with
    //       features that require constant topology such as pipline parallelism
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
    //if (n_outputs < n_tokens) {
    //    return nullptr;
    //}

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
    auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);

    auto & cur = inp->out_ids;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_mean() const {
    auto inp = std::make_unique<llm_graph_input_mean>(cparams);

    auto & cur = inp->mean;

1255
    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
1256
1257
1258
1259
1260
1261
1262
1263
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cls() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1264
    auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
1265
1266
1267

    auto & cur = inp->cls;

1268
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
    auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);

    auto & cur = inp->cross_embd;

    // if we have the output embeddings from the encoder, use them directly
    // TODO: needs more work to be correct, for now just use the tensor shape
    //if (cross->t_embd) {
    //    cur = ggml_view_tensor(ctx0, cross->t_embd);

    //    return cur;
    //}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1289
    const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
    auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1314
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1315

1316
    auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
1317

1318
    const auto n_kv = mctx_cur->get_n_kv();
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
    ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
    cb(pos_bucket_1d, "pos_bucket_1d", -1);

    ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);

    pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
    pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
    pos_bias = ggml_cont      (ctx0, pos_bias);

    cb(pos_bias, "pos_bias", -1);

    return pos_bias;
}

ggml_tensor * llm_graph_context::build_attn_mha(
         ggml_tensor * q,
         ggml_tensor * k,
         ggml_tensor * v,
         ggml_tensor * kq_b,
         ggml_tensor * kq_mask,
1351
         ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1352
1353
1354
         ggml_tensor * v_mla,
               float   kq_scale,
                 int   il) const {
1355
1356
1357
1358
    const bool v_trans = v->nb[1] > v->nb[2];

    // split the batch into streams if needed
    const auto n_stream = k->ne[3];
1359

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1360
    q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
1361

1362
1363
1364
    q = ggml_permute(ctx0, q, 0, 2, 1, 3);
    k = ggml_permute(ctx0, k, 0, 2, 1, 3);
    v = ggml_permute(ctx0, v, 0, 2, 1, 3);
1365
1366
1367

    ggml_tensor * cur;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1368
    if (cparams.flash_attn && kq_b == nullptr) {
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
        GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");

        if (v_trans) {
            v = ggml_transpose(ctx0, v);
        }

        // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
        if (k->type == GGML_TYPE_F32) {
            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
        }

        if (v->type == GGML_TYPE_F32) {
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
        }

        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1386
        cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
1387

1388
1389
        ggml_flash_attn_ext_add_sinks(cur, sinks);
        ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
1390

1391
        if (v_mla) {
1392
1393
1394
#if 0
            // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
            // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
1395
1396
            cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
1397
1398
1399
1400
1401
#else
            // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
            // The permutations are noops and only change how the tensor data is interpreted.
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1402
            cb(cur, "fattn_mla", il);
1403
1404
1405
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
1406
1407
        }

1408
        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1409
1410
    } else {
        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1411
        cb(kq, "kq", il);
1412
1413
1414
1415
1416
1417
1418

        // note: this op tends to require high floating point range
        //       while for some models F16 is enough, for others it is not, so we default to F32 here
        ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

        if (arch == LLM_ARCH_GROK) {
            // need to do the following:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1419
            // multiply by attn_output_multiplier
1420
1421
1422
1423
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1424
1425
1426
1427
            kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
            cb(kq, "kq_tanh", il);
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
            cb(kq, "kq_scaled", il);
1428
1429
1430
1431
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1432
            cb(kq, "kq_scaled_1", il);
1433
            kq = ggml_tanh (ctx0, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1434
            cb(kq, "kq_tanh", il);
1435
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1436
            cb(kq, "kq_scaled_2", il);
1437
1438
1439
1440
        }

        if (kq_b) {
            kq = ggml_add(ctx0, kq, kq_b);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1441
            cb(kq, "kq_plus_kq_b", il);
1442
1443
1444
        }

        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
1445
        ggml_soft_max_add_sinks(kq, sinks);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1446
        cb(kq, "kq_soft_max", il);
1447
1448
1449
1450

        if (!v_trans) {
            // note: avoid this branch
            v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1451
            cb(v, "v_cont", il);
1452
1453
1454
        }

        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1455
        cb(kqv, "kqv", il);
1456

1457
1458
1459
        // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
        if (v_mla) {
            kqv = ggml_mul_mat(ctx0, v_mla, kqv);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1460
            cb(kqv, "kqv_mla", il);
1461
1462
1463
        }

        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
1464

1465
1466
        // recombine streams
        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

        if (!cparams.offload_kqv) {
            // all nodes between the KV store and the attention output are run on the CPU
            ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
        }
    }

    ggml_build_forward_expand(gf, cur);

    return cur;
}

llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
    auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);

    // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1483
1484
    inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
    ggml_set_input(inp->self_kq_mask);
1485

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
    inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;

    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
        ggml_set_input(inp->self_kq_mask_swa);

        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    } else {
        inp->self_kq_mask_swa     = nullptr;
        inp->self_kq_mask_swa_cnv = nullptr;
    }
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

    return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_no_cache * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1509
        ggml_tensor * sinks,
1510
        ggml_tensor * v_mla,
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
            float     kq_scale,
            int       il) const {
    GGML_UNUSED(n_tokens);

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1521
1522
1523
    const bool is_swa = hparams.is_swa(il);

    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
1524

1525
1526
    // [TAG_NO_CACHE_PAD]
    // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1527
1528
    //       but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
    //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
1529

1530
1531
1532
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1533

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1534
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1552
static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
1553
1554
1555
1556
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_hparams & hparams,
    const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1557
    const llama_kv_cache_context * mctx_cur) {
1558

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1559
    auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
1560

1561
    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1562
        GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
1563

1564
1565
1566
        const auto n_kv     = mctx_cur->get_n_kv();
        const auto n_tokens = ubatch.n_tokens;
        const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1567

1568
1569
        inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
1570

1571
1572
        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1573

1574
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1575
1576
    }

1577
1578
1579
    return inp;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1580
1581
llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1582

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1583
    auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
1584

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1585
    return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
1586
1587
1588
}

ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1589
        llm_graph_input_attn_kv * inp,
1590
1591
1592
1593
1594
1595
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1596
        ggml_tensor * sinks,
1597
        ggml_tensor * v_mla,
1598
1599
1600
1601
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1602
    // expand k later to enable rope fusion which directly writes into k-v cache
1603
1604
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, v_cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1605
    ggml_build_forward_expand(gf, k_cur);
1606

1607
    const auto * mctx_cur = inp->mctx;
1608

1609
1610
1611
1612
    // store to KV cache
    {
        const auto & k_idxs = inp->get_k_idxs();
        const auto & v_idxs = inp->get_v_idxs();
1613

1614
1615
1616
        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }
1617

1618
    const auto & kq_mask = inp->get_kq_mask();
1619

1620
1621
1622
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1623

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1624
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1625
    cb(cur, "kqv_out", il);
1626

1627
1628
1629
1630
1631
1632
1633
    if (wo) {
        cur = build_lora_mm(wo, cur);
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }
1634

1635
1636
1637
    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }
1638

1639
1640
    return cur;
}
1641

1642
ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1643
        llm_graph_input_attn_kv_iswa * inp,
1644
1645
1646
1647
1648
1649
1650
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1651
        ggml_tensor * v_mla,
1652
1653
1654
1655
1656
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
1657

1658
1659
1660
    if (k_cur) {
        ggml_build_forward_expand(gf, k_cur);
    }
1661

1662
1663
    if (v_cur) {
        ggml_build_forward_expand(gf, v_cur);
1664
1665
    }

1666
1667
    const auto * mctx_iswa = inp->mctx;

1668
1669
    const bool is_swa = hparams.is_swa(il);

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
    const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();

    // optionally store to KV cache
    if (k_cur) {
        const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
    }

    if (v_cur) {
        const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }

1685
1686
    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();

1687
1688
1689
1690
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1691
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
    auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);

    const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

1714
    inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
    ggml_set_input(inp->cross_kq_mask);

    inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;

    return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_cross * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1730
        ggml_tensor * sinks,
1731
        ggml_tensor * v_mla,
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask_cross();

1742
1743
1744
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1745

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1746
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

1764
1765
1766
// TODO: maybe separate the inner implementation into a separate function
//       like with the non-sliding window equivalent
//       once sliding-window hybrid caches are a thing.
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1767
1768
llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
1769

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1770
    auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
1771

1772
    const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1773

1774
1775
1776
1777
1778
1779
1780
1781
    {
        const auto n_kv = mctx_cur->get_base()->get_n_kv();

        inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1782

1783
1784
1785
1786
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1787
        GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
1788
1789
1790
1791
1792
1793
1794
1795

        const auto n_kv = mctx_cur->get_swa()->get_n_kv();

        inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask_swa);
1796

1797
1798
1799
        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1800
    return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
}

ggml_tensor * llm_graph_context::build_rs(
        ggml_tensor * s,
        ggml_tensor * state_copy_main,
        ggml_tensor * state_copy_extra,
            int32_t   state_size,
            int32_t   n_seqs,
           uint32_t   n_rs,
           uint32_t   rs_head,
           uint32_t   rs_size,
            int32_t   rs_zero,
        const llm_graph_get_rows_fn & get_state_rows) const {

    ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);

    // Clear a single state which will then be copied to the other cleared states.
    // Note that this is a no-op when the view is zero-sized.
    ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
    ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
    // {state_size, rs_size} -> {state_size, n_seqs}
    ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
    ggml_build_forward_expand(gf, output_states);

    // copy extra states which won't be changed further (between n_seqs and n_rs)
    ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
1830
1831
    ggml_build_forward_expand(gf,
        ggml_cpy(ctx0,
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
            states_extra,
            ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));

    return output_states;
}

static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_memory_recurrent_context * mctx_cur) {

    auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);

    const int64_t n_rs   = mctx_cur->get_n_rs();
    const int64_t n_seqs = ubatch.n_seqs;

    inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
    ggml_set_input(inp->s_copy);

    inp->s_copy_main  = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
    inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);

    return inp;
}

llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);

    auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);

    return (llm_graph_input_rs *) res->add_input(std::move(inp));
}
1864

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
ggml_tensor * llm_graph_context::build_rs(
        llm_graph_input_rs * inp,
        ggml_tensor * s,
            int32_t   state_size,
            int32_t   n_seqs,
        const llm_graph_get_rows_fn & get_state_rows) const {
    const auto * kv_state = inp->mctx;

    return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
                    kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
                    get_state_rows);
1876
1877
1878
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
1879
1880
1881
1882
    llm_graph_input_rs * inp,
    const llama_ubatch & ubatch,
                   int   il) const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1883
1884
1885
1886
1887

    const auto token_shift_count = hparams.token_shift_count;

    const int64_t n_seqs  = ubatch.n_seqs;

1888
    ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
1889

1890
1891
1892
    ggml_tensor * token_shift = build_rs(
            inp, token_shift_all,
            hparams.n_embd_r(), n_seqs);
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902

    token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

    return token_shift;
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
         ggml_tensor * token_shift,
  const llama_ubatch & ubatch,
                 int   il) const {
1903
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1904
1905
1906
1907
1908
1909

    const auto token_shift_count = hparams.token_shift_count;
    const auto n_embd = hparams.n_embd;

    const int64_t n_seqs = ubatch.n_seqs;

1910
    const auto kv_head = mctx_cur->get_head();
1911
1912
1913
1914

    return ggml_cpy(
        ctx0,
        ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
1915
        ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
1916
1917
1918
    );
}

1919
1920
1921
1922
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
    const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);

    auto inp_rs   = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1923
    auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
1924
1925
1926
1927
1928
1929

    auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);

    return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
void llm_graph_context::build_dense_out(
    ggml_tensor * dense_2,
    ggml_tensor * dense_3) const {
    if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) {
        return;
    }
    ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd;
    GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd");

    cur = ggml_mul_mat(ctx0, dense_2, cur);
    cur = ggml_mul_mat(ctx0, dense_3, cur);
    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;
    ggml_build_forward_expand(gf, cur);
}


1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
void llm_graph_context::build_pooling(
        ggml_tensor * cls,
        ggml_tensor * cls_b,
        ggml_tensor * cls_out,
        ggml_tensor * cls_out_b) const {
    if (!cparams.embeddings) {
        return;
    }

    ggml_tensor * inp = res->t_embd;

    //// find result_norm tensor for input
    //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
    //    inp = ggml_graph_node(gf, i);
    //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
    //        break;
    //    }

    //    inp = nullptr;
    //}

    GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

    ggml_tensor * cur;

    switch (pooling_type) {
        case LLAMA_POOLING_TYPE_NONE:
            {
                cur = inp;
            } break;
        case LLAMA_POOLING_TYPE_MEAN:
            {
                ggml_tensor * inp_mean = build_inp_mean();
                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
            } break;
        case LLAMA_POOLING_TYPE_CLS:
        case LLAMA_POOLING_TYPE_LAST:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                cur = ggml_get_rows(ctx0, inp, inp_cls);
            } break;
        case LLAMA_POOLING_TYPE_RANK:
            {
                ggml_tensor * inp_cls = build_inp_cls();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1991
                cur = ggml_get_rows(ctx0, inp, inp_cls);
1992

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1993
1994
                // classification head
                // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
1995
                if (cls) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1996
                    cur = ggml_mul_mat(ctx0, cls, cur);
1997
1998
1999
2000
                    if (cls_b) {
                        cur = ggml_add(ctx0, cur, cls_b);
                    }
                    cur = ggml_tanh(ctx0, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2001
                }
2002

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2003
2004
2005
2006
2007
2008
                // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
                // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
                // Single layer classification head (direct projection)
                // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
                if (cls_out) {
                    cur = ggml_mul_mat(ctx0, cls_out, cur);
2009
2010
2011
                    if (cls_out_b) {
                        cur = ggml_add(ctx0, cur, cls_out_b);
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2012
2013
2014
2015
2016
                }

                // softmax for qwen3 reranker
                if (arch == LLM_ARCH_QWEN3) {
                    cur = ggml_soft_max(ctx0, cur);
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
                }
            } break;
        default:
            {
                GGML_ABORT("unknown pooling type");
            }
    }

    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;

    ggml_build_forward_expand(gf, cur);
}
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;

    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2046
        relative_position = std::abs(relative_position);
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
    } else {
        relative_position = -std::min<int32_t>(relative_position, 0);
    }

    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);

    return relative_bucket;
}