llama-graph.cpp 61.9 KB
Newer Older
1
2
3
4
5
#include "llama-graph.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
6
7
8
9
10

#include "llama-kv-cache-unified.h"
#include "llama-kv-cache-unified-iswa.h"
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <cassert>
#include <cmath>
#include <cstring>

void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
    if (ubatch->token) {
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
    }

    if (ubatch->embd) {
        const int64_t n_embd   = embd->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
    }
}

31
32
33
34
35
36
37
38
39
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
    res &= (!embd   && !params.ubatch.embd)  || (embd   &&   embd->ne[0] == params.ubatch.n_tokens);

    return res;
}

40
41
42
43
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && pos) {
        const int64_t n_tokens = ubatch->n_tokens;

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        if (ubatch->token && n_pos_per_embd == 4) {
            // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
            // the 3 first dims are the same, and 4th dim is all 0
            std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
            // copy the first dimension
            for (int i = 0; i < n_tokens; ++i) {
                pos_data[               i] = ubatch->pos[i];
                pos_data[    n_tokens + i] = ubatch->pos[i];
                pos_data[2 * n_tokens + i] = ubatch->pos[i];
                pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
            }
            ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
        } else {
            ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
        }
59
60
61
    }
}

62
63
64
65
66
67
68
69
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= pos->ne[0] == params.ubatch.n_tokens;

    return res;
}

70
71
72
73
74
75
76
77
78
79
80
81
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && attn_scale) {
        const int64_t n_tokens = ubatch->n_tokens;

        std::vector<float> attn_scale_data(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const float pos = ubatch->pos[i];
            attn_scale_data[i] = std::log(
                std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
            ) * f_attn_temp_scale + 1.0;
        }

82
        ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
83
84
85
86
87
88
89
90
    }
}

void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
91
        GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        int32_t * data = (int32_t *) pos_bucket->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
                }
            }
        }
    }
}

void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
107
108
109
        mctx->set_input_pos_bucket(pos_bucket, ubatch);
    }
}
110

111
112
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(out_ids);
113

114
    const int64_t n_tokens = ubatch->n_tokens;
115

116
117
    GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
    int32_t * data = (int32_t *) out_ids->data;
118

119
120
121
    if (n_outputs == n_tokens) {
        for (int i = 0; i < n_tokens; ++i) {
            data[i] = i;
122
123
        }

124
125
        return;
    }
126

127
    GGML_ASSERT(ubatch->output);
128

129
    int n_outputs = 0;
130

131
132
133
    for (int i = 0; i < n_tokens; ++i) {
        if (ubatch->output[i]) {
            data[n_outputs++] = i;
134
135
136
137
        }
    }
}

138
139
140
141
142
143
144
145
bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= n_outputs == params.n_outputs;

    return res;
}

146
147
148
149
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
150
        const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
151
152
153
154
155

        GGML_ASSERT(mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));

        float * data = (float *) mean->data;
156
        memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
157

158
159
160
161
162
        std::vector<uint64_t> sums(n_seqs_unq, 0);
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
163

164
                sums[seq_idx] += ubatch->n_seq_tokens;
165
166
167
            }
        }

168
169
170
171
172
        std::vector<float> div(n_seqs_unq, 0.0f);
        for (int s = 0; s < n_seqs_unq; ++s) {
            const uint64_t sum = sums[s];
            if (sum > 0) {
                div[s] = 1.0f/float(sum);
173
174
175
            }
        }

176
177
178
179
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
180

181
182
                for (int j = 0; j < n_seq_tokens; ++j) {
                    data[seq_idx*n_tokens + i + j] = div[seq_idx];
183
184
185
186
                }
            }
        }
    }
187
}
188

189
190
191
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
    const int64_t n_tokens     = ubatch->n_tokens;
    const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
192

193
194
195
196
197
    if (cparams.embeddings && (
        cparams.pooling_type == LLAMA_POOLING_TYPE_CLS  ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
    )) {
198
199
200
201
        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
202
        memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
203

204
205
        std::vector<int> target_pos(n_seqs_unq, -1);
        std::vector<int> target_row(n_seqs_unq, -1);
206

207
        bool last = cparams.pooling_type == LLAMA_POOLING_TYPE_LAST;
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
        for (int i = 0; i < n_tokens; ++i) {
            const llama_pos pos = ubatch->pos[i];

            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];

                if (
                    (target_pos[seq_idx] == -1) ||
                    ( last && pos >= target_pos[seq_idx]) ||
                    (!last && pos <  target_pos[seq_idx])
                ) {
                    target_pos[seq_idx] = pos;
                    target_row[seq_idx] = i;
223
224
225
226
                }
            }
        }

227
228
229
        for (int s = 0; s < n_seqs_unq; ++s) {
            if (target_row[s] >= 0) {
                data[s] = target_row[s];
230
231
232
233
234
            }
        }
    }
}

235
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
236
237
    GGML_UNUSED(ubatch);

238
    const int64_t n_rs = mctx->get_n_rs();
239
240
241
242
243
244

    if (s_copy) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
        int32_t * data = (int32_t *) s_copy->data;

        // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
245
246
        for (uint32_t i = 0; i < n_rs; ++i) {
            data[i] = mctx->s_copy(i);
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        }
    }
}

void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (cross_embd && !cross->v_embd.empty()) {
        assert(cross_embd->type == GGML_TYPE_F32);

        ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
    }
}

void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
262
263
264
265
266
267
268
    const int64_t n_kv     = ubatch->n_tokens;
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(kq_mask);
    GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));

    float * data = (float *) kq_mask->data;
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    for (int h = 0; h < 1; ++h) {
        for (int i1 = 0; i1 < n_tokens; ++i1) {
            const llama_seq_id s1 = ubatch->seq_id[i1][0];

            for (int i0 = 0; i0 < n_tokens; ++i0) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
                    const llama_seq_id s0 = ubatch->seq_id[i0][0];

                    // TODO: reimplement this like in llama_kv_cache_unified
                    if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) {
                        if (hparams.use_alibi) {
                            f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
                        } else {
                            f = 0.0f;
286
                        }
287
                        break;
288
289
                    }
                }
290
291

                data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
292
293
294
295
296
297
            }
        }
    }
}

void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
298
299
    mctx->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->set_input_v_idxs(self_v_idxs, ubatch);
300

301
302
    mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
303

304
305
bool llm_graph_input_attn_kv_unified::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_unified_context *>(params.mctx);
306

307
    this->mctx = mctx;
308

309
    bool res = true;
310

311
312
    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
313

314
315
    res &= self_kq_mask->ne[0] == mctx->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    res &= mctx->get_supports_set_rows(); // TODO: tmp

    return res;
}

void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
    mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);

    mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);

    mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
    mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);

    mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
}
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
bool llm_graph_input_attn_kv_unified_iswa::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_unified_iswa_context *>(params.mctx);

    this->mctx = mctx;

    bool res = true;

    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
    res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    res &= mctx->get_base()->get_supports_set_rows(); // TODO: tmp

    return res;
}

void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(cross_kq_mask);

    const int64_t n_enc    = cross_kq_mask->ne[0];
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    float * data = (float *) cross_kq_mask->data;

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_enc; ++j) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                    const llama_seq_id seq_id = ubatch->seq_id[i][s];

                    if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
                        f = 0.0f;
379
380
                    }
                }
381
382

                data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
383
            }
384
        }
385

386
387
388
        for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
            for (int j = 0; j < n_enc; ++j) {
                data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
389
390
391
392
393
            }
        }
    }
}

394
395
396
397
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
    inp_attn->set_input(ubatch);
    inp_rs->set_input(ubatch);
}
398

399
400
401
//
// llm_graph_result
//
402

403
404
llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
    reset();
405

406
407
408
    const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
    debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
}
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
int64_t llm_graph_result::get_max_nodes() const {
    return max_nodes;
}

void llm_graph_result::reset() {
    t_tokens      = nullptr;
    t_logits      = nullptr;
    t_embd        = nullptr;
    t_embd_pooled = nullptr;

    params = {};

    inputs.clear();

    buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
}

void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
    for (auto & input : inputs) {
        input->set_input(ubatch);
    }
}

bool llm_graph_result::can_reuse(const llm_graph_params & params) {
    if (!this->params.allow_reuse(params)) {
        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
447
        }
448
449

        return false;
450
    }
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

    if (debug > 1) {
        LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
    }

    bool res = true;

    for (auto & input : inputs) {
        const bool cur = input->can_reuse(params);

        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
        }

        res = res && cur;
    }

    if (debug > 0) {
        LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
    }

    return res;
}

llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
    inputs.emplace_back(std::move(input));
    return inputs.back().get();
}

void llm_graph_result::set_params(const llm_graph_params & params) {
    this->params = params;
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
}

//
// llm_graph_context
//

llm_graph_context::llm_graph_context(const llm_graph_params & params) :
    arch             (params.arch),
    hparams          (params.hparams),
    cparams          (params.cparams),
    ubatch           (params.ubatch),
    n_embd           (hparams.n_embd),
    n_layer          (hparams.n_layer),
    n_rot            (hparams.n_rot),
    n_ctx            (cparams.n_ctx),
    n_head           (hparams.n_head()),
    n_head_kv        (hparams.n_head_kv()),
    n_embd_head_k    (hparams.n_embd_head_k),
    n_embd_k_gqa     (hparams.n_embd_k_gqa()),
    n_embd_head_v    (hparams.n_embd_head_v),
    n_embd_v_gqa     (hparams.n_embd_v_gqa()),
    n_expert         (hparams.n_expert),
    n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
    freq_base        (cparams.rope_freq_base),
    freq_scale       (cparams.rope_freq_scale),
    ext_factor       (cparams.yarn_ext_factor),
    attn_factor      (cparams.yarn_attn_factor),
    beta_fast        (cparams.yarn_beta_fast),
    beta_slow        (cparams.yarn_beta_slow),
    norm_eps         (hparams.f_norm_eps),
    norm_rms_eps     (hparams.f_norm_rms_eps),
    n_tokens         (ubatch.n_tokens),
    n_outputs        (params.n_outputs),
    n_ctx_orig       (cparams.n_ctx_orig_yarn),
    pooling_type     (cparams.pooling_type),
    rope_type        (hparams.rope_type),
    sched            (params.sched),
    backend_cpu      (params.backend_cpu),
    cvec             (params.cvec),
    loras            (params.loras),
522
    mctx             (params.mctx),
523
524
    cross            (params.cross),
    cb_func          (params.cb),
525
526
527
528
    res              (params.res),
    ctx0             (res->get_ctx()),
    gf               (res->get_gf()) {
        res->set_params(params);
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    }

void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
    if (cb_func) {
        cb_func(ubatch, cur, name, il);
    }
}

ggml_tensor * llm_graph_context::build_cvec(
         ggml_tensor * cur,
                 int   il) const {
    return cvec->apply_to(ctx0, cur, il);
}

ggml_tensor * llm_graph_context::build_lora_mm(
          ggml_tensor * w,
          ggml_tensor * cur) const {
    ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);

    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float adapter_scale = lora.second;
        const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

        ggml_tensor * ab_cur = ggml_mul_mat(
                ctx0, lw->b,
                ggml_mul_mat(ctx0, lw->a, cur)
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_lora_mm_id(
          ggml_tensor * w,   // ggml_tensor * as
          ggml_tensor * cur, // ggml_tensor * b
          ggml_tensor * ids) const {
    ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float alpha = lora.first->alpha;
        const float rank  = (float) lw->b->ne[0];
        const float scale = alpha ? lora.second * alpha / rank : lora.second;

        ggml_tensor * ab_cur = ggml_mul_mat_id(
                ctx0, lw->b,
                ggml_mul_mat_id(ctx0, lw->a, cur, ids),
                ids
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_norm(
         ggml_tensor * cur,
         ggml_tensor * mw,
         ggml_tensor * mb,
       llm_norm_type   type,
                 int   il) const {
    switch (type) {
        case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
        case LLM_NORM_GROUP:
            {
                cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
                cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
                cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
            } break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx0, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx0, cur, mb);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_ffn(
         ggml_tensor * cur,
         ggml_tensor * up,
         ggml_tensor * up_b,
         ggml_tensor * up_s,
         ggml_tensor * gate,
         ggml_tensor * gate_b,
         ggml_tensor * gate_s,
         ggml_tensor * down,
         ggml_tensor * down_b,
         ggml_tensor * down_s,
         ggml_tensor * act_scales,
     llm_ffn_op_type   type_op,
   llm_ffn_gate_type   type_gate,
                 int   il) const {
    ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx0, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx0, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = build_lora_mm(gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = build_lora_mm(gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx0, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx0, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
690
691
692
693
694
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_swiglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_swiglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
695
696
697
698
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
699
700
701
702
703
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_geglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_geglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
704
705
706
707
708
709
710
711
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx0, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
712
713
714
715
716
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_reglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_reglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
717
718
719
720
721
722
723
724
725
726
727
728
729
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
730
731
732
733
734
735
736
737
738
739
740
741
                cur = ggml_swiglu(ctx0, cur);
                cb(cur, "ffn_swiglu", il);
            } break;
        case LLM_FFN_GEGLU:
            {
                cur = ggml_geglu(ctx0, cur);
                cb(cur, "ffn_geglu", il);
            } break;
        case LLM_FFN_REGLU:
            {
                cur = ggml_reglu(ctx0, cur);
                cb(cur, "ffn_reglu", il);
742
            } break;
743
744
        default:
            GGML_ABORT("fatal error");
745
746
    }

747
    if (gate && type_gate == LLM_FFN_PAR) {
748
749
750
751
752
753
        cur = ggml_mul(ctx0, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = build_lora_mm(down, cur);
754
755
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
756
757
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx0, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx0, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * up_exps,
         ggml_tensor * gate_exps,
         ggml_tensor * down_exps,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
         llama_expert_gating_func_type gating_op,
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
                 int   il,
         ggml_tensor * probs_in) const {
    return build_moe_ffn(
        cur,
        gate_inp,  /* gate_inp_b  */ nullptr,
        up_exps,   /* up_exps_b   */ nullptr,
        gate_exps, /* gate_exps_b */ nullptr,
        down_exps, /* down_exps_b */ nullptr,
        exp_probs_b,
        n_expert,
        n_expert_used,
        type_op,
        norm_w,
        scale_w,
        w_scale,
        gating_op,
        il,
        probs_in
    );
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * gate_inp_b,
         ggml_tensor * up_exps,
         ggml_tensor * up_exps_b,
         ggml_tensor * gate_exps,
         ggml_tensor * gate_exps_b,
         ggml_tensor * down_exps,
         ggml_tensor * down_exps_b,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
        llama_expert_gating_func_type gating_op,
                 int   il,
         ggml_tensor * probs_in) const {
831
832
833
834
    const int64_t n_embd   = cur->ne[0];
    const int64_t n_tokens = cur->ne[1];
    const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN

835
836
837
838
839
840
841
842
843
844
845
846
847
    ggml_tensor * logits = nullptr;

    if (probs_in == nullptr) {
        logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
        cb(logits, "ffn_moe_logits", il);
    } else {
        logits = probs_in;
    }

    if (gate_inp_b) {
        logits = ggml_add(ctx0, logits, gate_inp_b);
        cb(logits, "ffn_moe_logits_biased", il);
    }
848
849
850
851
852
853
854
855
856
857
858

    ggml_tensor * probs = nullptr;
    switch (gating_op) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
            {
                probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
            } break;
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
            {
                probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
            } break;
859
860
861
862
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
            {
                probs = logits; // [n_expert, n_tokens]
            } break;
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        default:
            GGML_ABORT("fatal error");
    }
    cb(probs, "ffn_moe_probs", il);

    // add experts selection bias - introduced in DeepSeek V3
    // leave probs unbiased as it's later used to get expert weights
    ggml_tensor * selection_probs = probs;
    if (exp_probs_b != nullptr) {
        selection_probs = ggml_add(ctx0, probs, exp_probs_b);
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

    // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
    // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
    if (arch == LLM_ARCH_LLAMA4) {
        selection_probs = logits;
    }

    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

    ggml_tensor * weights = ggml_get_rows(ctx0,
            ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
    cb(weights, "ffn_moe_weights", il);

891
892
893
894
895
896
897
    if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
        weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
        cb(weights, "ffn_moe_weights_softmax", il);
    }

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    if (norm_w) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

        weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx0, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

    cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);

    if (weight_before_ffn) {
917
918
        // repeat cur to [n_embd, n_expert_used, n_tokens]
        ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
919
920
921
922
923
924
925
        cur = ggml_mul(ctx0, repeated, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

926
927
928
929
930
    if (up_exps_b) {
        up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
        cb(up, "ffn_moe_up_biased", il);
    }

931
932
933
934
935
936
937
    ggml_tensor * experts = nullptr;
    if (gate_exps) {
        cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate", il);
    } else {
        cur = up;
    }
938

939
940
941
942
943
    if (gate_exps_b) {
        cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
        cb(cur, "ffn_moe_gate_biased", il);
    }

944
945
    switch (type_op) {
        case LLM_FFN_SILU:
946
947
948
949
            if (gate_exps) {
                cur = ggml_swiglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_swiglu", il);
            } else {
950
951
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_moe_silu", il);
952
953
            } break;
        case LLM_FFN_GELU:
954
955
956
957
            if (gate_exps) {
                cur = ggml_geglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_geglu", il);
            } else {
958
959
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_moe_gelu", il);
960
            } break;
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        case LLM_FFN_SWIGLU_OAI_MOE:
            {
                // TODO: move to hparams?
                constexpr float alpha = 1.702f;
                constexpr float limit = 7.0f;
                cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
                cb(cur, "ffn_moe_swiglu_oai", il);
            } break;
        case LLM_FFN_RELU:
            if (gate_exps) {
                cur = ggml_reglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_reglu", il);
            } else {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_moe_relu", il);
            } break;
977
978
979
980
        default:
            GGML_ABORT("fatal error");
    }

981
    experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
982
983
    cb(experts, "ffn_moe_down", il);

984
985
986
987
988
    if (down_exps_b) {
        experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
        cb(experts, "ffn_moe_down_biased", il);
    }

989
990
991
992
993
    if (!weight_before_ffn) {
        experts = ggml_mul(ctx0, experts, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

994
995
996
997
998
999
1000
1001
1002
1003
1004
    ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };

    assert(n_expert_used > 0);

    // order the views before the adds
    for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
        cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);

        ggml_build_forward_expand(gf, cur_experts[i]);
    }

1005
    // aggregate experts
1006
1007
1008
1009
    // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
    //       to avoid potentially a large number of add nodes during warmup
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14753
    ggml_tensor * moe_out = cur_experts[0];
1010

1011
1012
    for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
        moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
1013
1014
    }

1015
    if (hparams.n_expert_used == 1) {
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx0, moe_out);
    }

    cb(moe_out, "ffn_moe_out", il);

    return moe_out;
}

// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
    const int64_t n_embd = hparams.n_embd;

    auto inp = std::make_unique<llm_graph_input_embd>();

    ggml_tensor * cur = nullptr;

    if (ubatch.token) {
        inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
        //cb(inp->tokens, "inp_tokens", -1);
        ggml_set_input(inp->tokens);
1037
        res->t_tokens = inp->tokens;
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

        cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);

        // apply lora for embedding tokens if needed
        for (const auto & lora : *loras) {
            llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
            if (lw == nullptr) {
                continue;
            }

            const float adapter_scale = lora.second;
            const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

            ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
                        ctx0, lw->b, // non-transposed lora_b
                        ggml_get_rows(ctx0, lw->a, inp->tokens)
                        ), scale);

            cur = ggml_add(ctx0, cur, inpL_delta);
        }
    } else {
        inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
        ggml_set_input(inp->embd);

        cur = inp->embd;
    }

    // For Granite architecture
    if (hparams.f_embedding_scale != 0.0f) {
        cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
    }

    cb(cur, "inp_embd", -1);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos() const {
1078
    auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
1079
1080
1081

    auto & cur = inp->pos;

1082
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
1083
1084
1085
1086
1087
1088
1089
1090
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
1091
    auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
1092
1093
1094

    auto & cur = inp->attn_scale;

1095
1096
    // this need to be 1x1xN for broadcasting
    cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
1097
1098
1099
1100
1101
1102
1103
1104
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_out_ids() const {
1105
1106
1107
1108
1109
1110
1111
1112
    // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
    //       but this would make the graph topology depend on the number of output tokens, which can interere with
    //       features that require constant topology such as pipline parallelism
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
    //if (n_outputs < n_tokens) {
    //    return nullptr;
    //}

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);

    auto & cur = inp->out_ids;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_mean() const {
    auto inp = std::make_unique<llm_graph_input_mean>(cparams);

    auto & cur = inp->mean;

1130
    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cls() const {
    auto inp = std::make_unique<llm_graph_input_cls>(cparams);

    auto & cur = inp->cls;

1143
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
    auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);

    auto & cur = inp->cross_embd;

    // if we have the output embeddings from the encoder, use them directly
    // TODO: needs more work to be correct, for now just use the tensor shape
    //if (cross->t_embd) {
    //    cur = ggml_view_tensor(ctx0, cross->t_embd);

    //    return cur;
    //}

    const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
    const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
    auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
1189
    const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
1190

1191
    auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
1192

1193
    const auto n_kv = mctx_cur->get_n_kv();
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
    ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
    cb(pos_bucket_1d, "pos_bucket_1d", -1);

    ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);

    pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
    pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
    pos_bias = ggml_cont      (ctx0, pos_bias);

    cb(pos_bias, "pos_bias", -1);

    return pos_bias;
}

ggml_tensor * llm_graph_context::build_attn_mha(
         ggml_tensor * q,
         ggml_tensor * k,
         ggml_tensor * v,
         ggml_tensor * kq_b,
         ggml_tensor * kq_mask,
1226
         ggml_tensor * v_mla,
1227
         ggml_tensor * sinks,
1228
             float     kq_scale) const {
1229
1230
1231
1232
    const bool v_trans = v->nb[1] > v->nb[2];

    // split the batch into streams if needed
    const auto n_stream = k->ne[3];
1233

1234
    q = ggml_reshape_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream);
1235

1236
1237
1238
    q = ggml_permute(ctx0, q, 0, 2, 1, 3);
    k = ggml_permute(ctx0, k, 0, 2, 1, 3);
    v = ggml_permute(ctx0, v, 0, 2, 1, 3);
1239

1240
    const auto n_kv = k->ne[1];
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

    ggml_tensor * cur;

    // TODO: replace hardcoded padding with ggml-provided padding
    if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
        GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");

        if (v_trans) {
            v = ggml_transpose(ctx0, v);
        }

        // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
        if (k->type == GGML_TYPE_F32) {
            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
        }

        if (v->type == GGML_TYPE_F32) {
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
        }

        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);

1264
1265
        ggml_flash_attn_ext_add_sinks(cur, sinks);
        ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
1266

1267
        if (v_mla) {
1268
1269
1270
#if 0
            // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
            // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
1271
1272
            cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
1273
1274
1275
1276
1277
1278
1279
1280
#else
            // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
            // The permutations are noops and only change how the tensor data is interpreted.
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
1281
1282
        }

1283
        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    } else {
        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);

        // note: this op tends to require high floating point range
        //       while for some models F16 is enough, for others it is not, so we default to F32 here
        ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

        if (arch == LLM_ARCH_GROK) {
            // need to do the following:
            // multiply by attn_output_multiplyer of 0.08838834764831845
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

            kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
            kq = ggml_scale(ctx0, kq, 30);
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
            kq = ggml_tanh (ctx0, kq);
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
        }

        if (kq_b) {
            kq = ggml_add(ctx0, kq, kq_b);
        }

        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
1313
        ggml_soft_max_add_sinks(kq, sinks);
1314
1315
1316
1317
1318
1319
1320
1321

        if (!v_trans) {
            // note: avoid this branch
            v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
        }

        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);

1322
1323
1324
1325
1326
1327
        // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
        if (v_mla) {
            kqv = ggml_mul_mat(ctx0, v_mla, kqv);
        }

        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
1328

1329
1330
        // recombine streams
        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

        if (!cparams.offload_kqv) {
            // all nodes between the KV store and the attention output are run on the CPU
            ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
        }
    }

    ggml_build_forward_expand(gf, cur);

    return cur;
}

llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
    auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);

    // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
1347
    inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    ggml_set_input(inp->kq_mask);

    inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;

    return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_no_cache * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
1363
        ggml_tensor * v_mla,
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
            float     kq_scale,
            int       il) const {
    GGML_UNUSED(n_tokens);

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask();

1376
1377
1378
    // [TAG_NO_CACHE_PAD]
    // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
    assert(!ubatch.equal_seqs());
1379

1380
1381
1382
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1383

1384
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, nullptr, kq_scale);
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

1402
1403
1404
1405
1406
1407
static std::unique_ptr<llm_graph_input_attn_kv_unified> build_attn_inp_kv_unified_impl(
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_hparams & hparams,
    const llama_cparams & cparams,
    const llama_kv_cache_unified_context * mctx_cur) {
1408

1409
    auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, mctx_cur);
1410

1411
1412
    {
        GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
1413

1414
1415
1416
        const auto n_kv     = mctx_cur->get_n_kv();
        const auto n_tokens = ubatch.n_tokens;
        const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1417

1418
1419
        inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
1420

1421
1422
        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1423

1424
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1425
1426
    }

1427
1428
1429
1430
1431
1432
1433
1434
    return inp;
}

llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);

    auto inp = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur);

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
    return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_kv_unified * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
1446
        ggml_tensor * v_mla,
1447
1448
1449
1450
1451
1452
1453
1454
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

1455
    const auto * mctx_cur = inp->mctx;
1456

1457
1458
1459
1460
    // store to KV cache
    {
        const auto & k_idxs = inp->get_k_idxs();
        const auto & v_idxs = inp->get_v_idxs();
1461

1462
1463
1464
        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }
1465

1466
    const auto & kq_mask = inp->get_kq_mask();
1467

1468
1469
1470
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1471

1472
1473
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, nullptr, kq_scale);
    cb(cur, "kqv_out", il);
1474

1475
1476
1477
1478
1479
1480
1481
    if (wo) {
        cur = build_lora_mm(wo, cur);
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }
1482

1483
1484
1485
    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }
1486

1487
1488
    return cur;
}
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_kv_unified_iswa * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
            float     kq_scale,
            int       il) const {
    return build_attn_with_sinks(
            inp,
            wo,
            wo_b,
            q_cur,
            k_cur,
            v_cur,
            kq_b,
            v_mla,
            nullptr,
            kq_scale,
            il);
}
1514

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
ggml_tensor * llm_graph_context::build_attn_with_sinks(
        llm_graph_input_attn_kv_unified_iswa * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
        ggml_tensor * sinks,
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
1530

1531
1532
1533
    if (k_cur) {
        ggml_build_forward_expand(gf, k_cur);
    }
1534

1535
1536
    if (v_cur) {
        ggml_build_forward_expand(gf, v_cur);
1537
1538
    }

1539
1540
    const auto * mctx_iswa = inp->mctx;

1541
1542
    const bool is_swa = hparams.is_swa(il);

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
    const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();

    // optionally store to KV cache
    if (k_cur) {
        const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
    }

    if (v_cur) {
        const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }

1558
1559
    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();

1560
1561
1562
1563
1564
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);

    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, sinks, kq_scale);
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
    auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);

    const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

1587
    inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
    ggml_set_input(inp->cross_kq_mask);

    inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;

    return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_cross * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
1603
        ggml_tensor * v_mla,
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask_cross();

1614
1615
1616
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1617

1618
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, nullptr, kq_scale);
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

1636
1637
1638
1639
1640
// TODO: maybe separate the inner implementation into a separate function
//       like with the non-sliding window equivalent
//       once sliding-window hybrid caches are a thing.
llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
1641

1642
    auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, mctx_cur);
1643

1644
    const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1645

1646
1647
1648
1649
1650
1651
1652
1653
    {
        const auto n_kv = mctx_cur->get_base()->get_n_kv();

        inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1654

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    {
        GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");

        const auto n_kv = mctx_cur->get_swa()->get_n_kv();

        inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask_swa);
1668

1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    }

    return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_rs(
        ggml_tensor * s,
        ggml_tensor * state_copy_main,
        ggml_tensor * state_copy_extra,
            int32_t   state_size,
            int32_t   n_seqs,
           uint32_t   n_rs,
           uint32_t   rs_head,
           uint32_t   rs_size,
            int32_t   rs_zero,
        const llm_graph_get_rows_fn & get_state_rows) const {

    ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);

    // Clear a single state which will then be copied to the other cleared states.
    // Note that this is a no-op when the view is zero-sized.
    ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
    ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
    // {state_size, rs_size} -> {state_size, n_seqs}
    ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
    ggml_build_forward_expand(gf, output_states);

    // copy extra states which won't be changed further (between n_seqs and n_rs)
    ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
1702
1703
    ggml_build_forward_expand(gf,
        ggml_cpy(ctx0,
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
            states_extra,
            ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));

    return output_states;
}

static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_memory_recurrent_context * mctx_cur) {

    auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);

    const int64_t n_rs   = mctx_cur->get_n_rs();
    const int64_t n_seqs = ubatch.n_seqs;

    inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
    ggml_set_input(inp->s_copy);

    inp->s_copy_main  = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
    inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);

    return inp;
}

llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);

    auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);

    return (llm_graph_input_rs *) res->add_input(std::move(inp));
}
1736

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
ggml_tensor * llm_graph_context::build_rs(
        llm_graph_input_rs * inp,
        ggml_tensor * s,
            int32_t   state_size,
            int32_t   n_seqs,
        const llm_graph_get_rows_fn & get_state_rows) const {
    const auto * kv_state = inp->mctx;

    return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
                    kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
                    get_state_rows);
1748
1749
1750
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
1751
1752
1753
1754
    llm_graph_input_rs * inp,
    const llama_ubatch & ubatch,
                   int   il) const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1755
1756
1757
1758
1759

    const auto token_shift_count = hparams.token_shift_count;

    const int64_t n_seqs  = ubatch.n_seqs;

1760
    ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
1761

1762
1763
1764
    ggml_tensor * token_shift = build_rs(
            inp, token_shift_all,
            hparams.n_embd_r(), n_seqs);
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

    token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

    return token_shift;
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
         ggml_tensor * token_shift,
  const llama_ubatch & ubatch,
                 int   il) const {
1775
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1776
1777
1778
1779
1780
1781

    const auto token_shift_count = hparams.token_shift_count;
    const auto n_embd = hparams.n_embd;

    const int64_t n_seqs = ubatch.n_seqs;

1782
    const auto kv_head = mctx_cur->get_head();
1783
1784
1785
1786

    return ggml_cpy(
        ctx0,
        ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
1787
        ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
1788
1789
1790
    );
}

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
    const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);

    auto inp_rs   = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
    auto inp_attn = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());

    auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);

    return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
void llm_graph_context::build_pooling(
        ggml_tensor * cls,
        ggml_tensor * cls_b,
        ggml_tensor * cls_out,
        ggml_tensor * cls_out_b) const {
    if (!cparams.embeddings) {
        return;
    }

    ggml_tensor * inp = res->t_embd;

    //// find result_norm tensor for input
    //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
    //    inp = ggml_graph_node(gf, i);
    //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
    //        break;
    //    }

    //    inp = nullptr;
    //}

    GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

    ggml_tensor * cur;

    switch (pooling_type) {
        case LLAMA_POOLING_TYPE_NONE:
            {
                cur = inp;
            } break;
        case LLAMA_POOLING_TYPE_MEAN:
            {
                ggml_tensor * inp_mean = build_inp_mean();
                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
            } break;
        case LLAMA_POOLING_TYPE_CLS:
        case LLAMA_POOLING_TYPE_LAST:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                cur = ggml_get_rows(ctx0, inp, inp_cls);
            } break;
        case LLAMA_POOLING_TYPE_RANK:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                inp = ggml_get_rows(ctx0, inp, inp_cls);

1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
                if (cls) {
                    // classification head
                    // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
                    cur = ggml_mul_mat(ctx0, cls, inp);
                    if (cls_b) {
                        cur = ggml_add(ctx0, cur, cls_b);
                    }
                    cur = ggml_tanh(ctx0, cur);

                    // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
                    // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
                    if (cls_out) {
                        cur = ggml_mul_mat(ctx0, cls_out, cur);
                        if (cls_out_b) {
                            cur = ggml_add(ctx0, cur, cls_out_b);
                        }
                    }
                } else if (cls_out) {
                    // Single layer classification head (direct projection)
                    // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
                    cur = ggml_mul_mat(ctx0, cls_out, inp);
                    if (cls_out_b) {
                        cur = ggml_add(ctx0, cur, cls_out_b);
                    }
                } else {
                    GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
                }
            } break;
        default:
            {
                GGML_ABORT("unknown pooling type");
            }
    }

    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;

    ggml_build_forward_expand(gf, cur);
}
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;

    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
        relative_position = abs(relative_position);
    } else {
        relative_position = -std::min<int32_t>(relative_position, 0);
    }

    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);

    return relative_bucket;
}