llama-graph.cpp 64.9 KB
Newer Older
1
2
3
4
5
#include "llama-graph.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
6

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7
8
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
9
10
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <cassert>
#include <cmath>
#include <cstring>

void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
    if (ubatch->token) {
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
    }

    if (ubatch->embd) {
        const int64_t n_embd   = embd->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
    }
}

31
32
33
34
35
36
37
38
39
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
    res &= (!embd   && !params.ubatch.embd)  || (embd   &&   embd->ne[0] == params.ubatch.n_tokens);

    return res;
}

40
41
42
43
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && pos) {
        const int64_t n_tokens = ubatch->n_tokens;

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        if (ubatch->token && n_pos_per_embd == 4) {
            // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
            // the 3 first dims are the same, and 4th dim is all 0
            std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
            // copy the first dimension
            for (int i = 0; i < n_tokens; ++i) {
                pos_data[               i] = ubatch->pos[i];
                pos_data[    n_tokens + i] = ubatch->pos[i];
                pos_data[2 * n_tokens + i] = ubatch->pos[i];
                pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
            }
            ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
        } else {
            ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
        }
59
60
61
    }
}

62
63
64
65
66
67
68
69
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= pos->ne[0] == params.ubatch.n_tokens;

    return res;
}

70
71
72
73
74
75
76
77
78
79
80
81
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && attn_scale) {
        const int64_t n_tokens = ubatch->n_tokens;

        std::vector<float> attn_scale_data(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const float pos = ubatch->pos[i];
            attn_scale_data[i] = std::log(
                std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
            ) * f_attn_temp_scale + 1.0;
        }

82
        ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
83
84
85
86
87
88
89
90
    }
}

void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
91
        GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        int32_t * data = (int32_t *) pos_bucket->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
                }
            }
        }
    }
}

void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
107
108
109
        mctx->set_input_pos_bucket(pos_bucket, ubatch);
    }
}
110

111
112
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(out_ids);
113

114
    const int64_t n_tokens = ubatch->n_tokens;
115

116
117
    GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
    int32_t * data = (int32_t *) out_ids->data;
118

119
120
121
    if (n_outputs == n_tokens) {
        for (int i = 0; i < n_tokens; ++i) {
            data[i] = i;
122
123
        }

124
125
        return;
    }
126

127
    GGML_ASSERT(ubatch->output);
128

129
    int n_outputs = 0;
130

131
132
133
    for (int i = 0; i < n_tokens; ++i) {
        if (ubatch->output[i]) {
            data[n_outputs++] = i;
134
135
136
137
        }
    }
}

138
139
140
141
142
143
144
145
bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= n_outputs == params.n_outputs;

    return res;
}

146
147
148
149
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
150
        const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
151
152
153
154
155

        GGML_ASSERT(mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));

        float * data = (float *) mean->data;
156
        memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
157

158
159
160
161
162
        std::vector<uint64_t> sums(n_seqs_unq, 0);
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
163

164
                sums[seq_idx] += ubatch->n_seq_tokens;
165
166
167
            }
        }

168
169
170
171
172
        std::vector<float> div(n_seqs_unq, 0.0f);
        for (int s = 0; s < n_seqs_unq; ++s) {
            const uint64_t sum = sums[s];
            if (sum > 0) {
                div[s] = 1.0f/float(sum);
173
174
175
            }
        }

176
177
178
179
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
180

181
182
                for (int j = 0; j < n_seq_tokens; ++j) {
                    data[seq_idx*n_tokens + i + j] = div[seq_idx];
183
184
185
186
                }
            }
        }
    }
187
}
188

189
190
191
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
    const int64_t n_tokens     = ubatch->n_tokens;
    const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
192

193
194
195
196
197
    if (cparams.embeddings && (
        cparams.pooling_type == LLAMA_POOLING_TYPE_CLS  ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
    )) {
198
199
200
201
        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
202
        memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
203

204
205
        std::vector<int> target_pos(n_seqs_unq, -1);
        std::vector<int> target_row(n_seqs_unq, -1);
206

Daniel Hiltgen's avatar
Daniel Hiltgen committed
207
208
209
210
        const bool last = (
             cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
            (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
        );
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
        for (int i = 0; i < n_tokens; ++i) {
            const llama_pos pos = ubatch->pos[i];

            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];

                if (
                    (target_pos[seq_idx] == -1) ||
                    ( last && pos >= target_pos[seq_idx]) ||
                    (!last && pos <  target_pos[seq_idx])
                ) {
                    target_pos[seq_idx] = pos;
                    target_row[seq_idx] = i;
226
227
228
229
                }
            }
        }

230
231
232
        for (int s = 0; s < n_seqs_unq; ++s) {
            if (target_row[s] >= 0) {
                data[s] = target_row[s];
233
234
235
236
237
            }
        }
    }
}

238
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
239
240
    GGML_UNUSED(ubatch);

241
    const int64_t n_rs = mctx->get_n_rs();
242
243
244
245
246
247

    if (s_copy) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
        int32_t * data = (int32_t *) s_copy->data;

        // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
248
249
        for (uint32_t i = 0; i < n_rs; ++i) {
            data[i] = mctx->s_copy(i);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        }
    }
}

void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (cross_embd && !cross->v_embd.empty()) {
        assert(cross_embd->type == GGML_TYPE_F32);

        ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
static void print_mask(float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
    LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
    const char * swa_type_str = (swa_type == LLAMA_SWA_TYPE_NONE) ? "LLAMA_SWA_TYPE_NONE" :
                          (swa_type == LLAMA_SWA_TYPE_STANDARD) ? "LLAMA_SWA_TYPE_STANDARD" :
                          (swa_type == LLAMA_SWA_TYPE_CHUNKED) ? "LLAMA_SWA_TYPE_CHUNKED" :
                          (swa_type == LLAMA_SWA_TYPE_SYMMETRIC) ? "LLAMA_SWA_TYPE_SYMMETRIC" : "unknown";
    LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
    LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
    LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);

    LLAMA_LOG_DEBUG("    ");
    for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
        LLAMA_LOG_DEBUG("%2d", j);
    }
    LLAMA_LOG_DEBUG("\n");

    for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
        LLAMA_LOG_DEBUG(" %2d ", i);
        for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
            float val = data[i * n_kv + j];
            if (val == -INFINITY) {
                LLAMA_LOG_DEBUG(" ∞");
            } else {
                LLAMA_LOG_DEBUG(" 0");
            }
        }
        LLAMA_LOG_DEBUG("\n");
    }
}

294
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
295
296
297
298
299
300
301
    const int64_t n_kv     = ubatch->n_tokens;
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(kq_mask);
    GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));

    float * data = (float *) kq_mask->data;
302

Daniel Hiltgen's avatar
Daniel Hiltgen committed
303
304
305
    // [TAG_NO_CACHE_ISWA]
    GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");

306
307
308
309
310
311
312
313
314
315
    for (int h = 0; h < 1; ++h) {
        for (int i1 = 0; i1 < n_tokens; ++i1) {
            const llama_seq_id s1 = ubatch->seq_id[i1][0];

            for (int i0 = 0; i0 < n_tokens; ++i0) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
                    const llama_seq_id s0 = ubatch->seq_id[i0][0];

Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
317
318
319
320
321
322
323
324
325
326
327
328
                    if (s0 != s1) {
                        continue; // skip different sequences
                    }

                    if (cparams.causal_attn && ubatch->pos[i0] > ubatch->pos[i1]) {
                        continue; // skip future tokens for causal attention
                    }

                    // TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
                    //if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
                    //    continue; // skip masked tokens for SWA
                    //}

329
                    // TODO: reimplement this like in llama_kv_cache_unified
Daniel Hiltgen's avatar
Daniel Hiltgen committed
330
331
332
333
                    if (hparams.use_alibi) {
                        f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
                    } else {
                        f = 0.0f;
334
335
                    }
                }
336
                data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
337
338
339
            }
        }
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
340
341
342
    if (debug) {
        print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
    }
343
344
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
345
void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
346
347
    mctx->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->set_input_v_idxs(self_v_idxs, ubatch);
348

349
350
    mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
351

Daniel Hiltgen's avatar
Daniel Hiltgen committed
352
353
bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
354

355
    this->mctx = mctx;
356

357
    bool res = true;
358

359
360
    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
361

362
363
    res &= self_kq_mask->ne[0] == mctx->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
364

365
366
367
    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
368
void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
369
370
371
372
373
374
375
376
377
378
    mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);

    mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);

    mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
    mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);

    mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
}
379

Daniel Hiltgen's avatar
Daniel Hiltgen committed
380
381
bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

    this->mctx = mctx;

    bool res = true;

    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
    res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    return res;
}

void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(cross_kq_mask);

    const int64_t n_enc    = cross_kq_mask->ne[0];
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    float * data = (float *) cross_kq_mask->data;

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_enc; ++j) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                    const llama_seq_id seq_id = ubatch->seq_id[i][s];

                    if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
                        f = 0.0f;
423
424
                    }
                }
425
426

                data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
427
            }
428
        }
429

430
431
432
        for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
            for (int j = 0; j < n_enc; ++j) {
                data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
433
434
435
436
437
            }
        }
    }
}

438
439
440
441
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
    inp_attn->set_input(ubatch);
    inp_rs->set_input(ubatch);
}
442

443
444
445
//
// llm_graph_result
//
446

447
448
llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
    reset();
449

450
451
452
    const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
    debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
}
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
int64_t llm_graph_result::get_max_nodes() const {
    return max_nodes;
}

void llm_graph_result::reset() {
    t_tokens      = nullptr;
    t_logits      = nullptr;
    t_embd        = nullptr;
    t_embd_pooled = nullptr;

    params = {};

    inputs.clear();

    buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
}

void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
    for (auto & input : inputs) {
        input->set_input(ubatch);
    }
}

bool llm_graph_result::can_reuse(const llm_graph_params & params) {
    if (!this->params.allow_reuse(params)) {
        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
491
        }
492
493

        return false;
494
    }
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

    if (debug > 1) {
        LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
    }

    bool res = true;

    for (auto & input : inputs) {
        const bool cur = input->can_reuse(params);

        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
        }

        res = res && cur;
    }

    if (debug > 0) {
        LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
    }

    return res;
}

llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
    inputs.emplace_back(std::move(input));
    return inputs.back().get();
}

void llm_graph_result::set_params(const llm_graph_params & params) {
    this->params = params;
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
}

//
// llm_graph_context
//

llm_graph_context::llm_graph_context(const llm_graph_params & params) :
    arch             (params.arch),
    hparams          (params.hparams),
    cparams          (params.cparams),
    ubatch           (params.ubatch),
    n_embd           (hparams.n_embd),
    n_layer          (hparams.n_layer),
    n_rot            (hparams.n_rot),
    n_ctx            (cparams.n_ctx),
    n_head           (hparams.n_head()),
    n_head_kv        (hparams.n_head_kv()),
    n_embd_head_k    (hparams.n_embd_head_k),
    n_embd_k_gqa     (hparams.n_embd_k_gqa()),
    n_embd_head_v    (hparams.n_embd_head_v),
    n_embd_v_gqa     (hparams.n_embd_v_gqa()),
    n_expert         (hparams.n_expert),
    n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
    freq_base        (cparams.rope_freq_base),
    freq_scale       (cparams.rope_freq_scale),
    ext_factor       (cparams.yarn_ext_factor),
    attn_factor      (cparams.yarn_attn_factor),
    beta_fast        (cparams.yarn_beta_fast),
    beta_slow        (cparams.yarn_beta_slow),
    norm_eps         (hparams.f_norm_eps),
    norm_rms_eps     (hparams.f_norm_rms_eps),
    n_tokens         (ubatch.n_tokens),
    n_outputs        (params.n_outputs),
    n_ctx_orig       (cparams.n_ctx_orig_yarn),
    pooling_type     (cparams.pooling_type),
    rope_type        (hparams.rope_type),
    sched            (params.sched),
    backend_cpu      (params.backend_cpu),
    cvec             (params.cvec),
    loras            (params.loras),
566
    mctx             (params.mctx),
567
568
    cross            (params.cross),
    cb_func          (params.cb),
569
570
571
572
    res              (params.res),
    ctx0             (res->get_ctx()),
    gf               (res->get_gf()) {
        res->set_params(params);
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    }

void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
    if (cb_func) {
        cb_func(ubatch, cur, name, il);
    }
}

ggml_tensor * llm_graph_context::build_cvec(
         ggml_tensor * cur,
                 int   il) const {
    return cvec->apply_to(ctx0, cur, il);
}

ggml_tensor * llm_graph_context::build_lora_mm(
          ggml_tensor * w,
          ggml_tensor * cur) const {
    ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);

    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float adapter_scale = lora.second;
        const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

        ggml_tensor * ab_cur = ggml_mul_mat(
                ctx0, lw->b,
                ggml_mul_mat(ctx0, lw->a, cur)
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_lora_mm_id(
          ggml_tensor * w,   // ggml_tensor * as
          ggml_tensor * cur, // ggml_tensor * b
          ggml_tensor * ids) const {
    ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float alpha = lora.first->alpha;
        const float rank  = (float) lw->b->ne[0];
        const float scale = alpha ? lora.second * alpha / rank : lora.second;

        ggml_tensor * ab_cur = ggml_mul_mat_id(
                ctx0, lw->b,
                ggml_mul_mat_id(ctx0, lw->a, cur, ids),
                ids
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_norm(
         ggml_tensor * cur,
         ggml_tensor * mw,
         ggml_tensor * mb,
       llm_norm_type   type,
                 int   il) const {
    switch (type) {
        case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
        case LLM_NORM_GROUP:
            {
                cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
                cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
                cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
            } break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx0, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx0, cur, mb);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_ffn(
         ggml_tensor * cur,
         ggml_tensor * up,
         ggml_tensor * up_b,
         ggml_tensor * up_s,
         ggml_tensor * gate,
         ggml_tensor * gate_b,
         ggml_tensor * gate_s,
         ggml_tensor * down,
         ggml_tensor * down_b,
         ggml_tensor * down_s,
         ggml_tensor * act_scales,
     llm_ffn_op_type   type_op,
   llm_ffn_gate_type   type_gate,
                 int   il) const {
    ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx0, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx0, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = build_lora_mm(gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = build_lora_mm(gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx0, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx0, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
734
735
736
737
738
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_swiglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_swiglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
739
740
741
742
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
743
744
745
746
747
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_geglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_geglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
748
749
750
751
752
753
754
755
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx0, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
756
757
758
759
760
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_reglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_reglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
761
762
763
764
765
766
767
768
769
770
771
772
773
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
774
775
776
777
778
779
780
781
782
783
784
785
                cur = ggml_swiglu(ctx0, cur);
                cb(cur, "ffn_swiglu", il);
            } break;
        case LLM_FFN_GEGLU:
            {
                cur = ggml_geglu(ctx0, cur);
                cb(cur, "ffn_geglu", il);
            } break;
        case LLM_FFN_REGLU:
            {
                cur = ggml_reglu(ctx0, cur);
                cb(cur, "ffn_reglu", il);
786
            } break;
787
788
        default:
            GGML_ABORT("fatal error");
789
790
    }

791
    if (gate && type_gate == LLM_FFN_PAR) {
792
793
794
795
796
797
        cur = ggml_mul(ctx0, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = build_lora_mm(down, cur);
798
799
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
800
801
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx0, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx0, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * up_exps,
         ggml_tensor * gate_exps,
         ggml_tensor * down_exps,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
         llama_expert_gating_func_type gating_op,
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
                 int   il,
         ggml_tensor * probs_in) const {
    return build_moe_ffn(
        cur,
        gate_inp,  /* gate_inp_b  */ nullptr,
        up_exps,   /* up_exps_b   */ nullptr,
        gate_exps, /* gate_exps_b */ nullptr,
        down_exps, /* down_exps_b */ nullptr,
        exp_probs_b,
        n_expert,
        n_expert_used,
        type_op,
        norm_w,
        scale_w,
        w_scale,
        gating_op,
        il,
        probs_in
    );
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * gate_inp_b,
         ggml_tensor * up_exps,
         ggml_tensor * up_exps_b,
         ggml_tensor * gate_exps,
         ggml_tensor * gate_exps_b,
         ggml_tensor * down_exps,
         ggml_tensor * down_exps_b,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
        llama_expert_gating_func_type gating_op,
                 int   il,
         ggml_tensor * probs_in) const {
875
876
877
878
    const int64_t n_embd   = cur->ne[0];
    const int64_t n_tokens = cur->ne[1];
    const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN

879
880
881
882
883
884
885
886
887
888
889
890
891
    ggml_tensor * logits = nullptr;

    if (probs_in == nullptr) {
        logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
        cb(logits, "ffn_moe_logits", il);
    } else {
        logits = probs_in;
    }

    if (gate_inp_b) {
        logits = ggml_add(ctx0, logits, gate_inp_b);
        cb(logits, "ffn_moe_logits_biased", il);
    }
892
893
894
895
896
897
898
899
900
901
902

    ggml_tensor * probs = nullptr;
    switch (gating_op) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
            {
                probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
            } break;
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
            {
                probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
            } break;
903
904
905
906
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
            {
                probs = logits; // [n_expert, n_tokens]
            } break;
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
        default:
            GGML_ABORT("fatal error");
    }
    cb(probs, "ffn_moe_probs", il);

    // add experts selection bias - introduced in DeepSeek V3
    // leave probs unbiased as it's later used to get expert weights
    ggml_tensor * selection_probs = probs;
    if (exp_probs_b != nullptr) {
        selection_probs = ggml_add(ctx0, probs, exp_probs_b);
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

    // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
    // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
    if (arch == LLM_ARCH_LLAMA4) {
        selection_probs = logits;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
926
927
928
929
930
    if (arch == LLM_ARCH_GROVEMOE) {
        selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

931
932
933
934
935
    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
936
937
938
939
940
941
942
943
944
945
    if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) {
        // TODO: Use scalar div instead when/if implemented
        ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32);
        selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32);
        probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens);
    } else {
        probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens);
    }

    ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens]
946
947
    cb(weights, "ffn_moe_weights", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
948

949
950
951
952
953
954
955
    if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
        weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
        cb(weights, "ffn_moe_weights_softmax", il);
    }

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
    if (norm_w) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

        weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx0, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
972
973
974
    //call early so that topk-moe can be used
    ggml_build_forward_expand(gf, weights);

975
976
977
    cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);

    if (weight_before_ffn) {
978
979
        // repeat cur to [n_embd, n_expert_used, n_tokens]
        ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
980
981
982
983
984
985
986
        cur = ggml_mul(ctx0, repeated, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

987
988
989
990
991
    if (up_exps_b) {
        up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
        cb(up, "ffn_moe_up_biased", il);
    }

992
993
994
995
996
997
998
    ggml_tensor * experts = nullptr;
    if (gate_exps) {
        cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate", il);
    } else {
        cur = up;
    }
999

1000
1001
1002
1003
1004
    if (gate_exps_b) {
        cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
        cb(cur, "ffn_moe_gate_biased", il);
    }

1005
1006
    switch (type_op) {
        case LLM_FFN_SILU:
1007
1008
1009
1010
            if (gate_exps) {
                cur = ggml_swiglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_swiglu", il);
            } else {
1011
1012
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_moe_silu", il);
1013
1014
            } break;
        case LLM_FFN_GELU:
1015
1016
1017
1018
            if (gate_exps) {
                cur = ggml_geglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_geglu", il);
            } else {
1019
1020
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_moe_gelu", il);
1021
            } break;
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        case LLM_FFN_SWIGLU_OAI_MOE:
            {
                // TODO: move to hparams?
                constexpr float alpha = 1.702f;
                constexpr float limit = 7.0f;
                cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
                cb(cur, "ffn_moe_swiglu_oai", il);
            } break;
        case LLM_FFN_RELU:
            if (gate_exps) {
                cur = ggml_reglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_reglu", il);
            } else {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_moe_relu", il);
            } break;
1038
1039
1040
1041
        default:
            GGML_ABORT("fatal error");
    }

1042
    experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
1043
1044
    cb(experts, "ffn_moe_down", il);

1045
1046
1047
1048
1049
    if (down_exps_b) {
        experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
        cb(experts, "ffn_moe_down_biased", il);
    }

1050
1051
1052
1053
1054
    if (!weight_before_ffn) {
        experts = ggml_mul(ctx0, experts, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };

    assert(n_expert_used > 0);

    // order the views before the adds
    for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
        cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);

        ggml_build_forward_expand(gf, cur_experts[i]);
    }

1066
    // aggregate experts
1067
1068
1069
1070
    // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
    //       to avoid potentially a large number of add nodes during warmup
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14753
    ggml_tensor * moe_out = cur_experts[0];
1071

1072
1073
    for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
        moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
1074
1075
    }

1076
    if (hparams.n_expert_used == 1) {
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx0, moe_out);
    }

    cb(moe_out, "ffn_moe_out", il);

    return moe_out;
}

// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
    const int64_t n_embd = hparams.n_embd;

    auto inp = std::make_unique<llm_graph_input_embd>();

    ggml_tensor * cur = nullptr;

    if (ubatch.token) {
        inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
        //cb(inp->tokens, "inp_tokens", -1);
        ggml_set_input(inp->tokens);
1098
        res->t_tokens = inp->tokens;
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

        cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);

        // apply lora for embedding tokens if needed
        for (const auto & lora : *loras) {
            llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
            if (lw == nullptr) {
                continue;
            }

            const float adapter_scale = lora.second;
            const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

            ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
                        ctx0, lw->b, // non-transposed lora_b
                        ggml_get_rows(ctx0, lw->a, inp->tokens)
                        ), scale);

            cur = ggml_add(ctx0, cur, inpL_delta);
        }
    } else {
        inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
        ggml_set_input(inp->embd);

        cur = inp->embd;
    }

    // For Granite architecture
    if (hparams.f_embedding_scale != 0.0f) {
        cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
    }

    cb(cur, "inp_embd", -1);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos() const {
1139
    auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
1140
1141
1142

    auto & cur = inp->pos;

1143
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
1144
1145
1146
1147
1148
1149
1150
1151
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
1152
    auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
1153
1154
1155

    auto & cur = inp->attn_scale;

1156
1157
    // this need to be 1x1xN for broadcasting
    cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
1158
1159
1160
1161
1162
1163
1164
1165
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_out_ids() const {
1166
1167
1168
1169
1170
1171
1172
1173
    // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
    //       but this would make the graph topology depend on the number of output tokens, which can interere with
    //       features that require constant topology such as pipline parallelism
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
    //if (n_outputs < n_tokens) {
    //    return nullptr;
    //}

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);

    auto & cur = inp->out_ids;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_mean() const {
    auto inp = std::make_unique<llm_graph_input_mean>(cparams);

    auto & cur = inp->mean;

1191
    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
1192
1193
1194
1195
1196
1197
1198
1199
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cls() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1200
    auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
1201
1202
1203

    auto & cur = inp->cls;

1204
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
    auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);

    auto & cur = inp->cross_embd;

    // if we have the output embeddings from the encoder, use them directly
    // TODO: needs more work to be correct, for now just use the tensor shape
    //if (cross->t_embd) {
    //    cur = ggml_view_tensor(ctx0, cross->t_embd);

    //    return cur;
    //}

    const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
    const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
    auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1250
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1251

1252
    auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
1253

1254
    const auto n_kv = mctx_cur->get_n_kv();
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
    ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
    cb(pos_bucket_1d, "pos_bucket_1d", -1);

    ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);

    pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
    pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
    pos_bias = ggml_cont      (ctx0, pos_bias);

    cb(pos_bias, "pos_bias", -1);

    return pos_bias;
}

ggml_tensor * llm_graph_context::build_attn_mha(
         ggml_tensor * q,
         ggml_tensor * k,
         ggml_tensor * v,
         ggml_tensor * kq_b,
         ggml_tensor * kq_mask,
1287
         ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1288
1289
1290
         ggml_tensor * v_mla,
               float   kq_scale,
                 int   il) const {
1291
1292
1293
1294
    const bool v_trans = v->nb[1] > v->nb[2];

    // split the batch into streams if needed
    const auto n_stream = k->ne[3];
1295

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1296
    q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
1297

1298
1299
1300
    q = ggml_permute(ctx0, q, 0, 2, 1, 3);
    k = ggml_permute(ctx0, k, 0, 2, 1, 3);
    v = ggml_permute(ctx0, v, 0, 2, 1, 3);
1301

1302
    const auto n_kv = k->ne[1];
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

    ggml_tensor * cur;

    // TODO: replace hardcoded padding with ggml-provided padding
    if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
        GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");

        if (v_trans) {
            v = ggml_transpose(ctx0, v);
        }

        // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
        if (k->type == GGML_TYPE_F32) {
            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
        }

        if (v->type == GGML_TYPE_F32) {
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
        }

        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1325
        cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
1326

1327
1328
        ggml_flash_attn_ext_add_sinks(cur, sinks);
        ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
1329

1330
        if (v_mla) {
1331
1332
1333
#if 0
            // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
            // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
1334
1335
            cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
1336
1337
1338
1339
1340
#else
            // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
            // The permutations are noops and only change how the tensor data is interpreted.
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1341
            cb(cur, "fattn_mla", il);
1342
1343
1344
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
1345
1346
        }

1347
        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1348
1349
    } else {
        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1350
        cb(kq, "kq", il);
1351
1352
1353
1354
1355
1356
1357

        // note: this op tends to require high floating point range
        //       while for some models F16 is enough, for others it is not, so we default to F32 here
        ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

        if (arch == LLM_ARCH_GROK) {
            // need to do the following:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1358
            // multiply by attn_output_multiplier
1359
1360
1361
1362
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1363
1364
1365
1366
            kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
            cb(kq, "kq_tanh", il);
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
            cb(kq, "kq_scaled", il);
1367
1368
1369
1370
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1371
            cb(kq, "kq_scaled_1", il);
1372
            kq = ggml_tanh (ctx0, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1373
            cb(kq, "kq_tanh", il);
1374
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1375
            cb(kq, "kq_scaled_2", il);
1376
1377
1378
1379
        }

        if (kq_b) {
            kq = ggml_add(ctx0, kq, kq_b);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1380
            cb(kq, "kq_plus_kq_b", il);
1381
1382
1383
        }

        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
1384
        ggml_soft_max_add_sinks(kq, sinks);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1385
        cb(kq, "kq_soft_max", il);
1386
1387
1388
1389

        if (!v_trans) {
            // note: avoid this branch
            v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1390
            cb(v, "v_cont", il);
1391
1392
1393
        }

        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1394
        cb(kqv, "kqv", il);
1395

1396
1397
1398
        // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
        if (v_mla) {
            kqv = ggml_mul_mat(ctx0, v_mla, kqv);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1399
            cb(kqv, "kqv_mla", il);
1400
1401
1402
        }

        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
1403

1404
1405
        // recombine streams
        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

        if (!cparams.offload_kqv) {
            // all nodes between the KV store and the attention output are run on the CPU
            ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
        }
    }

    ggml_build_forward_expand(gf, cur);

    return cur;
}

llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
    auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);

    // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
1422
    inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
    ggml_set_input(inp->kq_mask);

    inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;

    return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_no_cache * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1438
        ggml_tensor * sinks,
1439
        ggml_tensor * v_mla,
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
            float     kq_scale,
            int       il) const {
    GGML_UNUSED(n_tokens);

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask();

1452
1453
    // [TAG_NO_CACHE_PAD]
    // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1454
1455
    //       but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
    //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
1456

1457
1458
1459
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1460

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1461
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1479
static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
1480
1481
1482
1483
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_hparams & hparams,
    const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1484
    const llama_kv_cache_context * mctx_cur) {
1485

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1486
    auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
1487

1488
    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1489
        GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
1490

1491
1492
1493
        const auto n_kv     = mctx_cur->get_n_kv();
        const auto n_tokens = ubatch.n_tokens;
        const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1494

1495
1496
        inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
1497

1498
1499
        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1500

1501
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1502
1503
    }

1504
1505
1506
    return inp;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1507
1508
llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1509

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1510
    auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
1511

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1512
    return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
1513
1514
1515
}

ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1516
        llm_graph_input_attn_kv * inp,
1517
1518
1519
1520
1521
1522
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1523
        ggml_tensor * sinks,
1524
        ggml_tensor * v_mla,
1525
1526
1527
1528
1529
1530
1531
1532
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

1533
    const auto * mctx_cur = inp->mctx;
1534

1535
1536
1537
1538
    // store to KV cache
    {
        const auto & k_idxs = inp->get_k_idxs();
        const auto & v_idxs = inp->get_v_idxs();
1539

1540
1541
1542
        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }
1543

1544
    const auto & kq_mask = inp->get_kq_mask();
1545

1546
1547
1548
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1549

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1550
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1551
    cb(cur, "kqv_out", il);
1552

1553
1554
1555
1556
1557
1558
1559
    if (wo) {
        cur = build_lora_mm(wo, cur);
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }
1560

1561
1562
1563
    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }
1564

1565
1566
    return cur;
}
1567

1568
ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1569
        llm_graph_input_attn_kv_iswa * inp,
1570
1571
1572
1573
1574
1575
1576
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1577
        ggml_tensor * v_mla,
1578
1579
1580
1581
1582
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
1583

1584
1585
1586
    if (k_cur) {
        ggml_build_forward_expand(gf, k_cur);
    }
1587

1588
1589
    if (v_cur) {
        ggml_build_forward_expand(gf, v_cur);
1590
1591
    }

1592
1593
    const auto * mctx_iswa = inp->mctx;

1594
1595
    const bool is_swa = hparams.is_swa(il);

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
    const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();

    // optionally store to KV cache
    if (k_cur) {
        const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
    }

    if (v_cur) {
        const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }

1611
1612
    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();

1613
1614
1615
1616
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1617
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
    auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);

    const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

1640
    inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    ggml_set_input(inp->cross_kq_mask);

    inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;

    return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_cross * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1656
        ggml_tensor * sinks,
1657
        ggml_tensor * v_mla,
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask_cross();

1668
1669
1670
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1671

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1672
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

1690
1691
1692
// TODO: maybe separate the inner implementation into a separate function
//       like with the non-sliding window equivalent
//       once sliding-window hybrid caches are a thing.
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1693
1694
llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
1695

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1696
    auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
1697

1698
    const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1699

1700
1701
1702
1703
1704
1705
1706
1707
    {
        const auto n_kv = mctx_cur->get_base()->get_n_kv();

        inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1708

1709
1710
1711
1712
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1713
        GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
1714
1715
1716
1717
1718
1719
1720
1721

        const auto n_kv = mctx_cur->get_swa()->get_n_kv();

        inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask_swa);
1722

1723
1724
1725
        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1726
    return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
}

ggml_tensor * llm_graph_context::build_rs(
        ggml_tensor * s,
        ggml_tensor * state_copy_main,
        ggml_tensor * state_copy_extra,
            int32_t   state_size,
            int32_t   n_seqs,
           uint32_t   n_rs,
           uint32_t   rs_head,
           uint32_t   rs_size,
            int32_t   rs_zero,
        const llm_graph_get_rows_fn & get_state_rows) const {

    ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);

    // Clear a single state which will then be copied to the other cleared states.
    // Note that this is a no-op when the view is zero-sized.
    ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
    ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
    // {state_size, rs_size} -> {state_size, n_seqs}
    ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
    ggml_build_forward_expand(gf, output_states);

    // copy extra states which won't be changed further (between n_seqs and n_rs)
    ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
1756
1757
    ggml_build_forward_expand(gf,
        ggml_cpy(ctx0,
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
            states_extra,
            ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));

    return output_states;
}

static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_memory_recurrent_context * mctx_cur) {

    auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);

    const int64_t n_rs   = mctx_cur->get_n_rs();
    const int64_t n_seqs = ubatch.n_seqs;

    inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
    ggml_set_input(inp->s_copy);

    inp->s_copy_main  = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
    inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);

    return inp;
}

llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);

    auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);

    return (llm_graph_input_rs *) res->add_input(std::move(inp));
}
1790

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
ggml_tensor * llm_graph_context::build_rs(
        llm_graph_input_rs * inp,
        ggml_tensor * s,
            int32_t   state_size,
            int32_t   n_seqs,
        const llm_graph_get_rows_fn & get_state_rows) const {
    const auto * kv_state = inp->mctx;

    return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
                    kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
                    get_state_rows);
1802
1803
1804
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
1805
1806
1807
1808
    llm_graph_input_rs * inp,
    const llama_ubatch & ubatch,
                   int   il) const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1809
1810
1811
1812
1813

    const auto token_shift_count = hparams.token_shift_count;

    const int64_t n_seqs  = ubatch.n_seqs;

1814
    ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
1815

1816
1817
1818
    ggml_tensor * token_shift = build_rs(
            inp, token_shift_all,
            hparams.n_embd_r(), n_seqs);
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

    token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

    return token_shift;
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
         ggml_tensor * token_shift,
  const llama_ubatch & ubatch,
                 int   il) const {
1829
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1830
1831
1832
1833
1834
1835

    const auto token_shift_count = hparams.token_shift_count;
    const auto n_embd = hparams.n_embd;

    const int64_t n_seqs = ubatch.n_seqs;

1836
    const auto kv_head = mctx_cur->get_head();
1837
1838
1839
1840

    return ggml_cpy(
        ctx0,
        ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
1841
        ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
1842
1843
1844
    );
}

1845
1846
1847
1848
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
    const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);

    auto inp_rs   = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1849
    auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
1850
1851
1852
1853
1854
1855

    auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);

    return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
void llm_graph_context::build_dense_out(
    ggml_tensor * dense_2,
    ggml_tensor * dense_3) const {
    if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) {
        return;
    }
    ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd;
    GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd");

    cur = ggml_mul_mat(ctx0, dense_2, cur);
    cur = ggml_mul_mat(ctx0, dense_3, cur);
    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;
    ggml_build_forward_expand(gf, cur);
}


1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
void llm_graph_context::build_pooling(
        ggml_tensor * cls,
        ggml_tensor * cls_b,
        ggml_tensor * cls_out,
        ggml_tensor * cls_out_b) const {
    if (!cparams.embeddings) {
        return;
    }

    ggml_tensor * inp = res->t_embd;

    //// find result_norm tensor for input
    //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
    //    inp = ggml_graph_node(gf, i);
    //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
    //        break;
    //    }

    //    inp = nullptr;
    //}

    GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

    ggml_tensor * cur;

    switch (pooling_type) {
        case LLAMA_POOLING_TYPE_NONE:
            {
                cur = inp;
            } break;
        case LLAMA_POOLING_TYPE_MEAN:
            {
                ggml_tensor * inp_mean = build_inp_mean();
                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
            } break;
        case LLAMA_POOLING_TYPE_CLS:
        case LLAMA_POOLING_TYPE_LAST:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                cur = ggml_get_rows(ctx0, inp, inp_cls);
            } break;
        case LLAMA_POOLING_TYPE_RANK:
            {
                ggml_tensor * inp_cls = build_inp_cls();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1917
                cur = ggml_get_rows(ctx0, inp, inp_cls);
1918

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1919
1920
                // classification head
                // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
1921
                if (cls) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1922
                    cur = ggml_mul_mat(ctx0, cls, cur);
1923
1924
1925
1926
                    if (cls_b) {
                        cur = ggml_add(ctx0, cur, cls_b);
                    }
                    cur = ggml_tanh(ctx0, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1927
                }
1928

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1929
1930
1931
1932
1933
1934
                // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
                // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
                // Single layer classification head (direct projection)
                // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
                if (cls_out) {
                    cur = ggml_mul_mat(ctx0, cls_out, cur);
1935
1936
1937
                    if (cls_out_b) {
                        cur = ggml_add(ctx0, cur, cls_out_b);
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1938
1939
1940
1941
1942
                }

                // softmax for qwen3 reranker
                if (arch == LLM_ARCH_QWEN3) {
                    cur = ggml_soft_max(ctx0, cur);
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
                }
            } break;
        default:
            {
                GGML_ABORT("unknown pooling type");
            }
    }

    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;

    ggml_build_forward_expand(gf, cur);
}
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;

    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
        relative_position = abs(relative_position);
    } else {
        relative_position = -std::min<int32_t>(relative_position, 0);
    }

    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);

    return relative_bucket;
}