runner.go 22.3 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3
4
5
6
7
8

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
9
	"hash/maphash"
10
11
12
13
14
15
16
17
18
19
20
21
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
22
	"unicode/utf8"
23

24
25
	"golang.org/x/sync/semaphore"

26
	"github.com/ollama/ollama/api"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
29
	"github.com/ollama/ollama/model"
30
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
31
32
33
34
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
35
36
)

37
38
39
40
type contextList struct {
	list []ml.Context
}

41
type Sequence struct {
42
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
43
	// multimodal embeddings
44
	ctxs *contextList
45

46
47
48
49
	// batch index
	iBatch int

	// prompt inputs left to evaluate
50
	inputs []input.Input
51

Jesse Gross's avatar
Jesse Gross committed
52
	// inputs that have been added to a batch but not yet submitted to Forward
53
	pendingInputs []input.Input
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

70
71
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
72
73
74
75
76
77
78
79

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
80
	numKeep int32
81
82
83
84
85
86
87
88
89

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
90
	numPredicted        int
91
92
93
94
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
95
96
97
	numPredict int
	stop       []string
	numKeep    int32
98
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
99
	embedding  bool
100
101
}

102
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
103
104
105
106
	s.ready.Wait()

	startTime := time.Now()

107
	inputs, ctxs, err := s.inputs(prompt, images)
108
109
110
111
112
113
114
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
115
		params.numKeep = int32(len(inputs))
116
117
	}

118
119
120
	// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
	// otherwise we might truncate or split the batch against the model's wishes

121
122
123
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
124
125
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
126
		newInputs := inputs[:params.numKeep]
127
128
129
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
130
		inputs = newInputs
131
132
	}

Jesse Gross's avatar
Jesse Gross committed
133
	// TODO(jessegross): Ingest cached history for grammar
134
135

	return &Sequence{
136
		ctxs:                ctxs,
137
138
139
140
141
142
143
144
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
145
		sampler:             params.sampler,
146
147
148
149
150
151
152
153
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
154
// decoding images
155
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
156
	var inputs []input.Input
157
158
159
	var parts []string
	var matches [][]string

160
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
161

162
163
164
165
166
167
168
169
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}

170
171
172
173
174
175
176
	var contexts contextList
	runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
		for _, ctx := range ctxs {
			ctx.Close()
		}
	}, contexts.list)

177
	postTokenize := false
178
179
	for i, part := range parts {
		// text - tokenize
180
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
181
		if err != nil {
182
			return nil, nil, err
183
		}
184

185
		for _, t := range tokens {
186
			inputs = append(inputs, input.Input{Token: t})
187
188
		}

Jesse Gross's avatar
Jesse Gross committed
189
		// image - decode and store
190
191
192
193
194
195
196
197
198
199
200
201
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
202
				return nil, nil, fmt.Errorf("invalid image index: %d", n)
203
204
			}

205
206
			ctx := s.model.Backend().NewContext()
			contexts.list = append(contexts.list, ctx)
207
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
208
			if err != nil {
209
				return nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
210
211
			}

212
213
214
215
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

216
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
217
218
219
220
221
222
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
223
		inputs, err = multimodalProcessor.PostTokenize(inputs)
224
		if err != nil {
225
			return nil, nil, err
226
227
228
		}
	}

229
	return inputs, &contexts, nil
230
231
232
}

type Server struct {
233
234
235
236
237
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
238
	model model.Model
239

240
	// status for external health reporting - loading, ready to serve, etc.
241
	status llm.ServerStatus
242
243
244
245
246
247
248
249

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
250
	// TODO (jmorganca): make this n_batch
251
252
	batchSize int

253
254
255
256
257
258
259
260
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
261
262
	seqs []*Sequence

263
264
265
266
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

267
268
269
	// KV cache
	cache *InputCache

270
271
272
	// next sequence for prompt processing to avoid starvation
	nextSeq int

273
274
275
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
276
277
278
279
280
281

	// vocab is a llama.cpp vocab required for gammar-based
	// constrained generation (json mode, structured outputs)
	// TODO: this is temporary until Ollama sampling supports
	// constrained generation
	vocab *sample.Vocab
282
283
284
285
286
287
288
289
290
291
292
293
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
294
295
296
297
298
299
300
301
302
303
304
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
305
306
	}

307
308
309
310
311
312
313
314
315
316
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
317
318
319
320
321
322
323
324
325
326
327
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
328
	s.seqsSem.Release(1)
329
330
331
332
333
334
335
336
337
338
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
339
			err := s.processBatch()
340
341
342
			if err != nil {
				panic(err)
			}
343
344
345
346
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
347
func (s *Server) processBatch() error {
348
349
350
351
352
353
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

354
	var batchInputs []int32
Jesse Gross's avatar
Jesse Gross committed
355
	var batch input.Batch
356

357
358
359
360
361
362
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

363
364
365
366
367
		if seq == nil {
			continue
		}

		// if past the num predict limit
368
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
369
			s.removeSequence(seqIdx, "limit")
370
371
372
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
373
374
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
375
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
376
377
		}

378
379
		batchSize := s.batchSize

380
		for i, inp := range seq.inputs {
381
382
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
383
			// will cause a break if we have existing inputs.
384
385
386
387
388
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

389
390
391
392
393
394
395
396
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
397
398
				break
			}
Jesse Gross's avatar
Jesse Gross committed
399

400
401
402
403
404
405
406
407
408
409
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

				err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
				if err != nil {
410
411
412
413
414
415
416
417
418
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
						continue
					} else {
						return err
					}
419
420
421
				}
			}

422
			batchInputs = append(batchInputs, inp.Token)
423
			if inp.Multimodal != nil {
424
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
425
426
			}

Jesse Gross's avatar
Jesse Gross committed
427
428
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
429

Jesse Gross's avatar
Jesse Gross committed
430
			seq.iBatch = len(batch.Outputs)
431
			if i+1 == len(seq.inputs) {
432
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
433
			}
434
			seq.pendingInputs = append(seq.pendingInputs, inp)
435
		}
436
437

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
438
439
	}

440
441
442
443
444
445
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

446
	if len(batchInputs) == 0 {
447
		return nil
448
449
	}

Jesse Gross's avatar
Jesse Gross committed
450
451
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
452

453
	modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
454
	if err != nil {
455
		return fmt.Errorf("failed to decode batch: %w", err)
456
457
	}

458
	logits := modelOutput.Floats()
459

460
461
462
463
464
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
465
		// After calling Forward, pending inputs are now in the cache
466
467
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
468
			seq.pendingInputs = []input.Input{}
469
470
		}

471
472
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
473
474
475
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
476
477
478
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
479
480
		seq.numPredicted++
		if seq.numPredicted == 1 {
481
482
483
484
485
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
486
			// TODO(jessegross): Embedding support
487
488
489
			slog.Warn("generation of embedding outputs not yet supported")
			s.removeSequence(i, "")
			continue
490
491
492
		}

		// sample a token
Jesse Gross's avatar
Jesse Gross committed
493
		vocabSize := len(logits) / len(batch.Outputs)
494
495

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
496
		if err != nil {
497
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
498
		}
499
500

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
501
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
502
503
504
505
506
507
508
509
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
510
511
512
513
514
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

515
		seq.inputs = []input.Input{{Token: token}}
516
517
518
519

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
520
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
521
522
523
524
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
525
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
541
542
543
544
545

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
546
		if common.ContainsStopSuffix(sequence, seq.stop) {
547
548
549
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
550
		if common.IncompleteUnicode(sequence) {
551
552
553
554
555
556
557
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
558
559

	return nil
560
561
562
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
563
	var req llm.CompletionRequest
564
565
566
567
568
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

569
570
571
572
573
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

574
575
576
577
578
579
580
581
582
583
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

584
585
586
587
588
589
590
591
592
593
	var grammar *sample.Grammar
	var err error
	if req.Grammar != "" {
		grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
	}

594
	sampler := sample.NewSampler(
595
596
597
598
599
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
600
		grammar,
601
602
	)

603
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
604
605
606
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
607
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
608
		embedding:  false,
609
610
611
612
613
614
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

615
	// Ensure there is a place to put the sequence, released when removed from s.seqs
616
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
617
618
619
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
620
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
621
		}
622
623
624
		return
	}

625
	s.mu.Lock()
626
	found := false
627
628
	for i, sq := range s.seqs {
		if sq == nil {
629
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
630
631
			if err != nil {
				s.mu.Unlock()
632
				s.seqsSem.Release(1)
633
634
635
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
636

637
638
			s.seqs[i] = seq
			s.cond.Signal()
639
			found = true
640
641
642
643
644
			break
		}
	}
	s.mu.Unlock()

645
	if !found {
646
		s.seqsSem.Release(1)
647
648
649
650
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

651
652
653
654
655
656
657
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
658
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
659
660
661
662
663
664
665
666
667
668
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
669
670
671
672
673
674
675
676
677
678
679
				doneReason := "stop"
				if seq.doneReason == "limit" {
					doneReason = "length"
				}
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
					DoneReason:         doneReason,
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
680
681
682
683
684
685
686
687
688
689
690
691
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
692
693
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
694
695
696
697
698
699
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

700
701
702
703
704
705
706
707
708
709
710
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

711
func (s *Server) loadModel(
712
	ctx context.Context,
713
	mpath string,
714
	params ml.BackendParams,
715
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
716
	parallel int,
717
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
718
	kvSize int,
719
720
	multiUserCache bool,
) {
721
	var err error
722
	s.model, err = model.New(ctx, mpath, params)
723
724
725
	if err != nil {
		panic(err)
	}
726

727
728
	s.vocab = sample.NewVocab(mpath)

Jesse Gross's avatar
Jesse Gross committed
729
	// TODO(jessegross): LoRA loading
730
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
731
		panic("loras are not yet implemented")
732
733
	}

734
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
735
736
737
	if err != nil {
		panic(err)
	}
738

Jesse Gross's avatar
Jesse Gross committed
739
740
741
742
743
744
745
746
747
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

748
	s.status = llm.ServerStatusReady
749
750
751
	s.ready.Done()
}

752
753
754
755
756
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
757
758
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
759
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
760
761
762
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
763
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
764
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
765
766
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
767
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
768
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
769

770
	var lpaths multiLPath
771
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
772

773
774
775
776
777
778
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
Jesse Gross's avatar
Jesse Gross committed
796
	slog.Info("starting ollama engine")
797
798
799

	server := &Server{
		batchSize: *batchSize,
800
		status:    llm.ServerStatusLoadingModel,
801
802
	}

Jesse Gross's avatar
Jesse Gross committed
803
804
805
806
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

807
	var tensorSplitFloats []float32
808
	if *tensorSplit != "" {
809
810
811
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
812
			f, _ := strconv.ParseFloat(s, 32)
813
			tensorSplitFloats[i] = float32(f)
814
		}
815
816
817
	}

	params := ml.BackendParams{
818
819
820
		Progress: func(progress float32) {
			server.progress = progress
		},
821
822
823
824
825
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
826
	}
827
828
829

	server.ready.Add(1)
	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
830
831
	defer cancel()

832
833
834
835
	go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)

	server.cond = sync.NewCond(&server.mu)

836
837
838
839
840
841
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
842
		return err
843
844
845
846
	}
	defer listener.Close()

	mux := http.NewServeMux()
847
848
849
850
851
852
853
	// TODO: support embeddings
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
854
855
856
857
858
859
860
861

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
862
		return err
863
864
	}

865
	return nil
866
}