model_text.go 8.67 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
package llama4

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
11
	"github.com/ollama/ollama/ml/nn/rope"
Michael Yang's avatar
llama4  
Michael Yang committed
12
13
14
15
16
17
18
19
20
21
22
	"github.com/ollama/ollama/model/input"
)

type TextAttention struct {
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_factors"`
}

Michael Yang's avatar
Michael Yang committed
23
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attentionScales ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
24
25
26
27
28
29
30
31
32
33
34
	batchSize, headDim := hiddenStates.Dim(1), cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	if useRope {
Michael Yang's avatar
Michael Yang committed
35
36
		query = opts.applyRotaryPositionEmbeddings(ctx, query, positions, sa.RopeFactors)
		key = opts.applyRotaryPositionEmbeddings(ctx, key, positions, sa.RopeFactors)
Michael Yang's avatar
Michael Yang committed
37
	}
Michael Yang's avatar
llama4  
Michael Yang committed
38

Michael Yang's avatar
Michael Yang committed
39
40
41
42
43
44
45
	if opts.useQKNorm {
		query = query.RMSNorm(ctx, nil, opts.eps)
		key = key.RMSNorm(ctx, nil, opts.eps)
	}

	if attentionScales != nil && !useRope {
		query = query.Mul(ctx, attentionScales)
Michael Yang's avatar
llama4  
Michael Yang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
	}

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
	return sa.Output.Forward(ctx, attention)
}

type TextMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
60
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
Michael Yang's avatar
llama4  
Michael Yang committed
61
62
63
64
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextExperts struct {
65
66
67
	Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
	Up   *nn.LinearBatch `gguf:"ffn_up_exps"`
	Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Michael Yang's avatar
llama4  
Michael Yang committed
68
69
70
71
72
73
74
75
76
77
}

func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
	experts := routerLogits.TopK(ctx, opts.numExpertsUsed)
	scores := routerLogits.Sigmoid(ctx).Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, experts)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
	hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
	hiddenStates = hiddenStates.Mul(ctx, scores)

78
79
80
	upStates := e.Up.Forward(ctx, hiddenStates, experts)
	gateStates := e.Gate.Forward(ctx, hiddenStates, experts)
	downStates := e.Down.Forward(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
Michael Yang's avatar
llama4  
Michael Yang committed
81
82
83

	nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
84
		nextStates = nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
Michael Yang's avatar
llama4  
Michael Yang committed
85
86
87
88
89
90
91
92
	}

	return nextStates
}

type TextMOE struct {
	Router       *nn.Linear `gguf:"ffn_gate_inp"`
	Experts      *TextExperts
Michael Yang's avatar
Michael Yang committed
93
	SharedExpert *TextMLP `gguf:",suf:_shexp"`
Michael Yang's avatar
llama4  
Michael Yang committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
}

func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := moe.Router.Forward(ctx, hiddenStates)

	sharedStates := moe.SharedExpert.Forward(ctx, hiddenStates, opts)
	routedStates := moe.Experts.Forward(ctx, hiddenStates, routerLogits, opts)
	return sharedStates.Add(ctx, routedStates)
}

type TextFeedForward interface {
	Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor
}

type TextLayer struct {
	AttentionNorm *nn.LayerNorm `gguf:"attn_norm"`
	Attention     *TextAttention

	FFNNorm     *nn.LayerNorm `gguf:"ffn_norm"`
	FeedForward TextFeedForward
}

Michael Yang's avatar
Michael Yang committed
118
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, attentionScales, outputs ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
119
120
121
122
	residual := hiddenStates

	// self attention
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
Michael Yang's avatar
Michael Yang committed
123
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, attentionScales, cache, useRope, opts)
Michael Yang's avatar
llama4  
Michael Yang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)
	residual = hiddenStates

	hiddenStates = d.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.FeedForward.Forward(ctx, hiddenStates, opts)

	return residual.Add(ctx, hiddenStates)
}

type TextOptions struct {
	hiddenSize                    int
	numHeads, numKVHeads, headDim int
	numExperts, numExpertsUsed    int
	ropeDim                       int
	ropeBase, ropeScale           float32
	eps                           float32
	interleaveLayerStep           int
Michael Yang's avatar
Michael Yang committed
147
	noRopeInterval                int
Michael Yang's avatar
llama4  
Michael Yang committed
148
	useQKNorm                     bool
Michael Yang's avatar
Michael Yang committed
149
150
151
	attentionTemperatureTuning    bool
	attentionScale                float64
	attentionFloorScale           float64
Michael Yang's avatar
llama4  
Michael Yang committed
152
153
}

Michael Yang's avatar
Michael Yang committed
154
155
156
157
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions, factors ml.Tensor) ml.Tensor {
	return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, rope.WithFactors(factors))
}

Michael Yang's avatar
llama4  
Michael Yang committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
type TextModel struct {
	Layers []TextLayer `gguf:"blk"`

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.LayerNorm `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

func newTextModel(c fs.Config) *TextModel {
	layers := make([]TextLayer, c.Uint("block_count"))
	interleaveLayerStep := c.Uint("interleave_moe_layer_step", 1)
	for i := range layers {
		if (i+1)%int(interleaveLayerStep) == 0 {
			layers[i] = TextLayer{FeedForward: &TextMOE{}}
		} else {
			layers[i] = TextLayer{FeedForward: &TextMLP{}}
		}
	}

	return &TextModel{
		Layers: layers,
		TextOptions: &TextOptions{
Michael Yang's avatar
Michael Yang committed
182
183
184
185
186
187
188
189
			hiddenSize:                 int(c.Uint("embedding_length")),
			numHeads:                   int(c.Uint("attention.head_count")),
			numKVHeads:                 int(c.Uint("attention.head_count_kv")),
			headDim:                    int(c.Uint("attention.head_dim", 128)),
			numExperts:                 int(c.Uint("expert_count")),
			numExpertsUsed:             int(c.Uint("expert_used_count")),
			ropeDim:                    int(c.Uint("rope.dimension_count")),
			ropeBase:                   c.Float("rope.freq_base"),
190
			ropeScale:                  c.Float("rope.scaling.factor", 1),
Michael Yang's avatar
Michael Yang committed
191
192
193
194
195
196
197
			eps:                        c.Float("attention.layer_norm_rms_epsilon"),
			interleaveLayerStep:        int(c.Uint("interleave_moe_layer_step", 1)),
			noRopeInterval:             int(c.Uint("no_rope_interval", 4)),
			useQKNorm:                  c.Bool("use_qk_norm", true),
			attentionTemperatureTuning: c.Bool("attention.temperature_tuning", true),
			attentionScale:             float64(c.Float("attention.scale", 0.1)),
			attentionFloorScale:        float64(c.Float("attention.floor_scale", 8192)),
Michael Yang's avatar
llama4  
Michael Yang committed
198
199
200
201
202
		},
	}
}

func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
203
204
205
	hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)

	for _, mi := range batch.Multimodal {
206
		img := mi.Multimodal[0].Tensor
Michael Yang's avatar
Michael Yang committed
207
208
		ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
	}
Michael Yang's avatar
llama4  
Michael Yang committed
209

Michael Yang's avatar
Michael Yang committed
210
211
212
213
214
215
216
	var attentionScales ml.Tensor
	if m.attentionTemperatureTuning {
		scales := make([]float32, len(batch.Positions))
		for i, p := range batch.Positions {
			scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0)
		}

Michael Yang's avatar
Michael Yang committed
217
		attentionScales = ctx.Input().FromFloats(scales, 1, 1, len(scales))
Michael Yang's avatar
Michael Yang committed
218
219
	}

Michael Yang's avatar
llama4  
Michael Yang committed
220
221
222
223
	for i, layer := range m.Layers {
		cache.SetLayer(i)
		wc := cache.(*kvcache.WrapperCache)
		wc.SetLayerType(1)
Michael Yang's avatar
Michael Yang committed
224
		useChunkedAttention := (i+1)%m.noRopeInterval != 0
Michael Yang's avatar
llama4  
Michael Yang committed
225
226
227
228
229
230
231
232
233
		if useChunkedAttention {
			wc.SetLayerType(0)
		}

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

Michael Yang's avatar
Michael Yang committed
234
		hiddenStates = layer.Forward(ctx, hiddenStates, positions, attentionScales, lastLayerOutputs, cache, useChunkedAttention, m.TextOptions)
Michael Yang's avatar
llama4  
Michael Yang committed
235
236
237
238
239
240
241
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
242
	return m.applyRotaryPositionEmbeddings(ctx, key, shift, m.Layers[layer].Attention.RopeFactors), nil
Michael Yang's avatar
llama4  
Michael Yang committed
243
}