model_text.go 9.14 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package llama4

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model/input"
)

type TextAttention struct {
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_factors"`
}

Michael Yang's avatar
Michael Yang committed
22
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attentionScales ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
	batchSize, headDim := hiddenStates.Dim(1), cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	if useRope {
		query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
		key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
36
	}
Michael Yang's avatar
llama4  
Michael Yang committed
37

Michael Yang's avatar
Michael Yang committed
38
39
40
41
42
43
44
	if opts.useQKNorm {
		query = query.RMSNorm(ctx, nil, opts.eps)
		key = key.RMSNorm(ctx, nil, opts.eps)
	}

	if attentionScales != nil && !useRope {
		query = query.Mul(ctx, attentionScales)
Michael Yang's avatar
llama4  
Michael Yang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
	}

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
	return sa.Output.Forward(ctx, attention)
}

type TextMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextExperts struct {
	Gate ml.Tensor `gguf:"ffn_gate_exps.weight"`
	Up   ml.Tensor `gguf:"ffn_up_exps.weight"`
	Down ml.Tensor `gguf:"ffn_down_exps.weight"`
}

func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
	experts := routerLogits.TopK(ctx, opts.numExpertsUsed)
	scores := routerLogits.Sigmoid(ctx).Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, experts)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
	hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
	hiddenStates = hiddenStates.Mul(ctx, scores)

	upStates := e.Up.MulmatID(ctx, hiddenStates, experts)
	gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts)
	downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)

	nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
	}

	return nextStates
}

Michael Yang's avatar
Michael Yang committed
89
// TextSharedExpert is TextMLP with different tensor names
Michael Yang's avatar
llama4  
Michael Yang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
type TextSharedExpert struct {
	Gate *nn.Linear `gguf:"ffn_gate_shexp"`
	Up   *nn.Linear `gguf:"ffn_up_shexp"`
	Down *nn.Linear `gguf:"ffn_down_shexp"`
}

func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextMOE struct {
	Router       *nn.Linear `gguf:"ffn_gate_inp"`
	Experts      *TextExperts
	SharedExpert *TextSharedExpert
}

func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := moe.Router.Forward(ctx, hiddenStates)

	sharedStates := moe.SharedExpert.Forward(ctx, hiddenStates, opts)
	routedStates := moe.Experts.Forward(ctx, hiddenStates, routerLogits, opts)
	return sharedStates.Add(ctx, routedStates)
}

type TextFeedForward interface {
	Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor
}

type TextLayer struct {
	AttentionNorm *nn.LayerNorm `gguf:"attn_norm"`
	Attention     *TextAttention

	FFNNorm     *nn.LayerNorm `gguf:"ffn_norm"`
	FeedForward TextFeedForward
}

Michael Yang's avatar
Michael Yang committed
129
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, attentionScales, outputs ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
130
131
132
133
	residual := hiddenStates

	// self attention
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
Michael Yang's avatar
Michael Yang committed
134
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, attentionScales, cache, useRope, opts)
Michael Yang's avatar
llama4  
Michael Yang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)
	residual = hiddenStates

	hiddenStates = d.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.FeedForward.Forward(ctx, hiddenStates, opts)

	return residual.Add(ctx, hiddenStates)
}

type TextOptions struct {
	hiddenSize                    int
	numHeads, numKVHeads, headDim int
	numExperts, numExpertsUsed    int
	ropeDim                       int
	ropeBase, ropeScale           float32
	eps                           float32
	interleaveLayerStep           int
Michael Yang's avatar
Michael Yang committed
158
	noRopeInterval                int
Michael Yang's avatar
llama4  
Michael Yang committed
159
	useQKNorm                     bool
Michael Yang's avatar
Michael Yang committed
160
161
162
	attentionTemperatureTuning    bool
	attentionScale                float64
	attentionFloorScale           float64
Michael Yang's avatar
llama4  
Michael Yang committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
}

type TextModel struct {
	Layers []TextLayer `gguf:"blk"`

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.LayerNorm `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

func newTextModel(c fs.Config) *TextModel {
	layers := make([]TextLayer, c.Uint("block_count"))
	interleaveLayerStep := c.Uint("interleave_moe_layer_step", 1)
	for i := range layers {
		if (i+1)%int(interleaveLayerStep) == 0 {
			layers[i] = TextLayer{FeedForward: &TextMOE{}}
		} else {
			layers[i] = TextLayer{FeedForward: &TextMLP{}}
		}
	}

	return &TextModel{
		Layers: layers,
		TextOptions: &TextOptions{
Michael Yang's avatar
Michael Yang committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
			hiddenSize:                 int(c.Uint("embedding_length")),
			numHeads:                   int(c.Uint("attention.head_count")),
			numKVHeads:                 int(c.Uint("attention.head_count_kv")),
			headDim:                    int(c.Uint("attention.head_dim", 128)),
			numExperts:                 int(c.Uint("expert_count")),
			numExpertsUsed:             int(c.Uint("expert_used_count")),
			ropeDim:                    int(c.Uint("rope.dimension_count")),
			ropeBase:                   c.Float("rope.freq_base"),
			ropeScale:                  c.Float("rope.freq_scale", 1),
			eps:                        c.Float("attention.layer_norm_rms_epsilon"),
			interleaveLayerStep:        int(c.Uint("interleave_moe_layer_step", 1)),
			noRopeInterval:             int(c.Uint("no_rope_interval", 4)),
			useQKNorm:                  c.Bool("use_qk_norm", true),
			attentionTemperatureTuning: c.Bool("attention.temperature_tuning", true),
			attentionScale:             float64(c.Float("attention.scale", 0.1)),
			attentionFloorScale:        float64(c.Float("attention.floor_scale", 8192)),
Michael Yang's avatar
llama4  
Michael Yang committed
205
206
207
208
209
		},
	}
}

func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
210
211
212
213
214
215
216
217
218
219
220
	hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)

	for _, mi := range batch.Multimodal {
		f32s := mi.Multimodal.(*chunk).floats()
		img, err := ctx.Input().FromFloatSlice(f32s, len(f32s)/m.hiddenSize, m.hiddenSize)
		if err != nil {
			panic(err)
		}

		ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
	}
Michael Yang's avatar
llama4  
Michael Yang committed
221

Michael Yang's avatar
Michael Yang committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
	var attentionScales ml.Tensor
	if m.attentionTemperatureTuning {
		scales := make([]float32, len(batch.Positions))
		for i, p := range batch.Positions {
			scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0)
		}

		var err error
		attentionScales, err = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
		if err != nil {
			panic(err)
		}
	}

Michael Yang's avatar
llama4  
Michael Yang committed
236
237
238
239
	for i, layer := range m.Layers {
		cache.SetLayer(i)
		wc := cache.(*kvcache.WrapperCache)
		wc.SetLayerType(1)
Michael Yang's avatar
Michael Yang committed
240
		useChunkedAttention := (i+1)%m.noRopeInterval != 0
Michael Yang's avatar
llama4  
Michael Yang committed
241
242
243
244
245
246
247
248
249
		if useChunkedAttention {
			wc.SetLayerType(0)
		}

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

Michael Yang's avatar
Michael Yang committed
250
		hiddenStates = layer.Forward(ctx, hiddenStates, positions, attentionScales, lastLayerOutputs, cache, useChunkedAttention, m.TextOptions)
Michael Yang's avatar
llama4  
Michael Yang committed
251
252
253
254
255
256
257
258
259
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
}