model_text.go 7.72 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
package llama4

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model/input"
)

type TextAttention struct {
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_factors"`
}

func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
	batchSize, headDim := hiddenStates.Dim(1), cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	if useRope {
		query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
		key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)

		if opts.useQKNorm {
			query = query.RMSNorm(ctx, nil, opts.eps)
			key = key.RMSNorm(ctx, nil, opts.eps)
		}
	}

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
	return sa.Output.Forward(ctx, attention)
}

type TextMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextExperts struct {
	Gate ml.Tensor `gguf:"ffn_gate_exps.weight"`
	Up   ml.Tensor `gguf:"ffn_up_exps.weight"`
	Down ml.Tensor `gguf:"ffn_down_exps.weight"`
}

func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
	experts := routerLogits.TopK(ctx, opts.numExpertsUsed)
	scores := routerLogits.Sigmoid(ctx).Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, experts)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
	hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
	hiddenStates = hiddenStates.Mul(ctx, scores)

	upStates := e.Up.MulmatID(ctx, hiddenStates, experts)
	gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts)
	downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)

	nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
	}

	return nextStates
}

// TextSharedExpert is TextMLP with different names
type TextSharedExpert struct {
	Gate *nn.Linear `gguf:"ffn_gate_shexp"`
	Up   *nn.Linear `gguf:"ffn_up_shexp"`
	Down *nn.Linear `gguf:"ffn_down_shexp"`
}

func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextMOE struct {
	Router       *nn.Linear `gguf:"ffn_gate_inp"`
	Experts      *TextExperts
	SharedExpert *TextSharedExpert
}

func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := moe.Router.Forward(ctx, hiddenStates)

	sharedStates := moe.SharedExpert.Forward(ctx, hiddenStates, opts)
	routedStates := moe.Experts.Forward(ctx, hiddenStates, routerLogits, opts)
	return sharedStates.Add(ctx, routedStates)
}

type TextFeedForward interface {
	Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor
}

type TextLayer struct {
	AttentionNorm *nn.LayerNorm `gguf:"attn_norm"`
	Attention     *TextAttention

	FFNNorm     *nn.LayerNorm `gguf:"ffn_norm"`
	FeedForward TextFeedForward
}

func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
	residual := hiddenStates

	// self attention
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, useRope, opts)

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)
	residual = hiddenStates

	hiddenStates = d.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.FeedForward.Forward(ctx, hiddenStates, opts)

	return residual.Add(ctx, hiddenStates)
}

type TextOptions struct {
	hiddenSize                    int
	numHeads, numKVHeads, headDim int
	numExperts, numExpertsUsed    int
	ropeDim                       int
	ropeBase, ropeScale           float32
	eps                           float32
	interleaveLayerStep           int
	useQKNorm                     bool
}

type TextModel struct {
	Layers []TextLayer `gguf:"blk"`

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.LayerNorm `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

func newTextModel(c fs.Config) *TextModel {
	layers := make([]TextLayer, c.Uint("block_count"))
	interleaveLayerStep := c.Uint("interleave_moe_layer_step", 1)
	for i := range layers {
		if (i+1)%int(interleaveLayerStep) == 0 {
			layers[i] = TextLayer{FeedForward: &TextMOE{}}
		} else {
			layers[i] = TextLayer{FeedForward: &TextMLP{}}
		}
	}

	return &TextModel{
		Layers: layers,
		TextOptions: &TextOptions{
			hiddenSize:          int(c.Uint("embedding_length")),
			numHeads:            int(c.Uint("attention.head_count")),
			numKVHeads:          int(c.Uint("attention.head_count_kv")),
			headDim:             int(c.Uint("attention.head_dim", 128)),
			numExperts:          int(c.Uint("expert_count")),
			numExpertsUsed:      int(c.Uint("expert_used_count")),
			ropeDim:             int(c.Uint("rope.dimension_count")),
			ropeBase:            c.Float("rope.freq_base"),
			ropeScale:           c.Float("rope.freq_scale", 1),
			eps:                 c.Float("attention.layer_norm_rms_epsilon"),
			interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)),
			useQKNorm:           c.Bool("use_qk_norm", true),
		},
	}
}

func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
	hiddenStates := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
		cache.SetLayer(i)
		wc := cache.(*kvcache.WrapperCache)
		wc.SetLayerType(1)
		useChunkedAttention := (i+1)%4 != 0
		if useChunkedAttention {
			wc.SetLayerType(0)
		}

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, useChunkedAttention, m.TextOptions)
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
}