llama-graph.cpp 67.8 KB
Newer Older
1
2
3
4
5
#include "llama-graph.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
6

Daniel Hiltgen's avatar
Daniel Hiltgen committed
7
8
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
9
10
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <cassert>
#include <cmath>
#include <cstring>

void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
    if (ubatch->token) {
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
    }

    if (ubatch->embd) {
        const int64_t n_embd   = embd->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
    }
}

31
32
33
34
35
36
37
38
39
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
    res &= (!embd   && !params.ubatch.embd)  || (embd   &&   embd->ne[0] == params.ubatch.n_tokens);

    return res;
}

40
41
42
43
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && pos) {
        const int64_t n_tokens = ubatch->n_tokens;

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        if (ubatch->token && n_pos_per_embd == 4) {
            // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
            // the 3 first dims are the same, and 4th dim is all 0
            std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
            // copy the first dimension
            for (int i = 0; i < n_tokens; ++i) {
                pos_data[               i] = ubatch->pos[i];
                pos_data[    n_tokens + i] = ubatch->pos[i];
                pos_data[2 * n_tokens + i] = ubatch->pos[i];
                pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
            }
            ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
        } else {
            ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
        }
59
60
61
    }
}

62
63
64
65
66
67
68
69
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= pos->ne[0] == params.ubatch.n_tokens;

    return res;
}

70
71
72
73
74
75
76
77
78
79
80
81
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && attn_scale) {
        const int64_t n_tokens = ubatch->n_tokens;

        std::vector<float> attn_scale_data(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const float pos = ubatch->pos[i];
            attn_scale_data[i] = std::log(
                std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
            ) * f_attn_temp_scale + 1.0;
        }

82
        ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
83
84
85
86
87
88
89
90
    }
}

void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
91
        GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        int32_t * data = (int32_t *) pos_bucket->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
                }
            }
        }
    }
}

void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
107
108
109
        mctx->set_input_pos_bucket(pos_bucket, ubatch);
    }
}
110

111
112
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(out_ids);
113

114
    const int64_t n_tokens = ubatch->n_tokens;
115

116
117
    GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
    int32_t * data = (int32_t *) out_ids->data;
118

119
120
121
    if (n_outputs == n_tokens) {
        for (int i = 0; i < n_tokens; ++i) {
            data[i] = i;
122
123
        }

124
125
        return;
    }
126

127
    GGML_ASSERT(ubatch->output);
128

129
    int n_outputs = 0;
130

131
132
133
    for (int i = 0; i < n_tokens; ++i) {
        if (ubatch->output[i]) {
            data[n_outputs++] = i;
134
135
136
137
        }
    }
}

138
139
140
141
142
143
144
145
bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
    bool res = true;

    res &= n_outputs == params.n_outputs;

    return res;
}

146
147
148
149
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
150
        const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
151
152
153
154
155

        GGML_ASSERT(mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));

        float * data = (float *) mean->data;
156
        memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
157

158
159
160
161
162
        std::vector<uint64_t> sums(n_seqs_unq, 0);
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
163

164
                sums[seq_idx] += ubatch->n_seq_tokens;
165
166
167
            }
        }

168
169
170
171
172
        std::vector<float> div(n_seqs_unq, 0.0f);
        for (int s = 0; s < n_seqs_unq; ++s) {
            const uint64_t sum = sums[s];
            if (sum > 0) {
                div[s] = 1.0f/float(sum);
173
174
175
            }
        }

176
177
178
179
        for (int i = 0; i < n_tokens; i += n_seq_tokens) {
            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];
180

181
182
                for (int j = 0; j < n_seq_tokens; ++j) {
                    data[seq_idx*n_tokens + i + j] = div[seq_idx];
183
184
185
186
                }
            }
        }
    }
187
}
188

189
190
191
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
    const int64_t n_tokens     = ubatch->n_tokens;
    const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
192

193
194
195
196
197
    if (cparams.embeddings && (
        cparams.pooling_type == LLAMA_POOLING_TYPE_CLS  ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
        cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
    )) {
198
199
200
201
        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
202
        memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
203

204
205
        std::vector<int> target_pos(n_seqs_unq, -1);
        std::vector<int> target_row(n_seqs_unq, -1);
206

Daniel Hiltgen's avatar
Daniel Hiltgen committed
207
208
209
210
        const bool last = (
             cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
            (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
        );
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
        for (int i = 0; i < n_tokens; ++i) {
            const llama_pos pos = ubatch->pos[i];

            for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                const llama_seq_id seq_id  = ubatch->seq_id[i][s];
                const int32_t      seq_idx = ubatch->seq_idx[seq_id];

                if (
                    (target_pos[seq_idx] == -1) ||
                    ( last && pos >= target_pos[seq_idx]) ||
                    (!last && pos <  target_pos[seq_idx])
                ) {
                    target_pos[seq_idx] = pos;
                    target_row[seq_idx] = i;
226
227
228
229
                }
            }
        }

230
231
232
        for (int s = 0; s < n_seqs_unq; ++s) {
            if (target_row[s] >= 0) {
                data[s] = target_row[s];
233
234
235
236
237
            }
        }
    }
}

238
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
239
240
    GGML_UNUSED(ubatch);

241
    const int64_t n_rs = mctx->get_n_rs();
242
243
244
245
246
247

    if (s_copy) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
        int32_t * data = (int32_t *) s_copy->data;

        // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
248
249
        for (uint32_t i = 0; i < n_rs; ++i) {
            data[i] = mctx->s_copy(i);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        }
    }
}

void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (cross_embd && !cross->v_embd.empty()) {
        assert(cross_embd->type == GGML_TYPE_F32);

        ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
264
static void print_mask(const float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
265
    LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
266
267
268
269
270
271
272
273
274
    const char * swa_type_str = "unknown";

    switch (swa_type) {
        case LLAMA_SWA_TYPE_NONE:      swa_type_str = "LLAMA_SWA_TYPE_NONE"; break;
        case LLAMA_SWA_TYPE_STANDARD:  swa_type_str = "LLAMA_SWA_TYPE_STANDARD"; break;
        case LLAMA_SWA_TYPE_CHUNKED:   swa_type_str = "LLAMA_SWA_TYPE_CHUNKED"; break;
        case LLAMA_SWA_TYPE_SYMMETRIC: swa_type_str = "LLAMA_SWA_TYPE_SYMMETRIC"; break;
    };

Daniel Hiltgen's avatar
Daniel Hiltgen committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
    LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
    LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);

    LLAMA_LOG_DEBUG("    ");
    for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
        LLAMA_LOG_DEBUG("%2d", j);
    }
    LLAMA_LOG_DEBUG("\n");

    for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
        LLAMA_LOG_DEBUG(" %2d ", i);
        for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
            float val = data[i * n_kv + j];
            if (val == -INFINITY) {
                LLAMA_LOG_DEBUG(" ∞");
            } else {
                LLAMA_LOG_DEBUG(" 0");
            }
        }
        LLAMA_LOG_DEBUG("\n");
    }
}

299
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
300
301
302
    const int64_t n_kv     = ubatch->n_tokens;
    const int64_t n_tokens = ubatch->n_tokens;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
303
304
305
306
307
    const auto fill_mask = [&](float * data, int n_swa, llama_swa_type swa_type) {
        for (int h = 0; h < 1; ++h) {
            for (int i1 = 0; i1 < n_tokens; ++i1) {
                const llama_seq_id s1 = ubatch->seq_id[i1][0];
                const llama_pos    p1 = ubatch->pos[i1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
308

Daniel Hiltgen's avatar
Daniel Hiltgen committed
309
                const uint64_t idst = h*(n_kv*n_tokens) + i1*n_kv;
310

Daniel Hiltgen's avatar
Daniel Hiltgen committed
311
                for (int i0 = 0; i0 < n_tokens; ++i0) {
312
                    const llama_seq_id s0 = ubatch->seq_id[i0][0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
313
                    const llama_pos p0    = ubatch->pos[i0];
314

Daniel Hiltgen's avatar
Daniel Hiltgen committed
315
                    // mask different sequences
Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
                    if (s0 != s1) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
317
                        continue;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
318
319
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
320
321
322
                    // mask future tokens
                    if (cparams.causal_attn && p0 > p1) {
                        continue;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
323
324
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
325
326
327
                    // apply SWA if any
                    if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
                        continue;
328
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
329
330

                    data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
331
332
333
                }
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    };

    {
        GGML_ASSERT(self_kq_mask);
        GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));

        float * data = (float *) self_kq_mask->data;

        std::fill(data, data + ggml_nelements(self_kq_mask), -INFINITY);

        fill_mask(data, 0, LLAMA_SWA_TYPE_NONE);

        if (debug) {
            print_mask(data, n_tokens, n_kv, 0, LLAMA_SWA_TYPE_NONE);
        }
349
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
        GGML_ASSERT(self_kq_mask_swa);
        GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));

        float * data = (float *) self_kq_mask_swa->data;

        std::fill(data, data + ggml_nelements(self_kq_mask_swa), -INFINITY);

        fill_mask(data, hparams.n_swa, hparams.swa_type);

        if (debug) {
            print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
364
    }
365
366
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
367
void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
368
369
    mctx->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->set_input_v_idxs(self_v_idxs, ubatch);
370

371
372
    mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
373

Daniel Hiltgen's avatar
Daniel Hiltgen committed
374
375
bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
376

377
    this->mctx = mctx;
378

379
    bool res = true;
380

381
382
    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
383

384
385
    res &= self_kq_mask->ne[0] == mctx->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
386

387
388
389
    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
390
void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
391
392
393
394
395
396
397
398
399
400
    mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
    mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);

    mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);

    mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
    mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);

    mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
}
401

Daniel Hiltgen's avatar
Daniel Hiltgen committed
402
403
bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
    const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

    this->mctx = mctx;

    bool res = true;

    res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
  //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there

    res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
    res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
    res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);

    return res;
}

void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
    GGML_ASSERT(cross_kq_mask);

    const int64_t n_enc    = cross_kq_mask->ne[0];
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    float * data = (float *) cross_kq_mask->data;

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_enc; ++j) {
                float f = -INFINITY;

                for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
                    const llama_seq_id seq_id = ubatch->seq_id[i][s];

                    if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
                        f = 0.0f;
445
446
                    }
                }
447
448

                data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
449
            }
450
        }
451

452
453
454
        for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
            for (int j = 0; j < n_enc; ++j) {
                data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
455
456
457
458
459
            }
        }
    }
}

460
461
462
463
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
    inp_attn->set_input(ubatch);
    inp_rs->set_input(ubatch);
}
464

465
466
467
//
// llm_graph_result
//
468

469
470
llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
    reset();
471

472
473
474
    const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
    debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
}
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
int64_t llm_graph_result::get_max_nodes() const {
    return max_nodes;
}

void llm_graph_result::reset() {
    t_tokens      = nullptr;
    t_logits      = nullptr;
    t_embd        = nullptr;
    t_embd_pooled = nullptr;

    params = {};

    inputs.clear();

    buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
}

void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
    for (auto & input : inputs) {
        input->set_input(ubatch);
    }
}

bool llm_graph_result::can_reuse(const llm_graph_params & params) {
    if (!this->params.allow_reuse(params)) {
        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
513
        }
514
515

        return false;
516
    }
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    if (debug > 1) {
        LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
    }

    bool res = true;

    for (auto & input : inputs) {
        const bool cur = input->can_reuse(params);

        if (debug > 1) {
            LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
        }

        res = res && cur;
    }

    if (debug > 0) {
        LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
    }

    return res;
}

llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
    inputs.emplace_back(std::move(input));
    return inputs.back().get();
}

void llm_graph_result::set_params(const llm_graph_params & params) {
    this->params = params;
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
}

//
// llm_graph_context
//

llm_graph_context::llm_graph_context(const llm_graph_params & params) :
    arch             (params.arch),
    hparams          (params.hparams),
    cparams          (params.cparams),
    ubatch           (params.ubatch),
    n_embd           (hparams.n_embd),
    n_layer          (hparams.n_layer),
    n_rot            (hparams.n_rot),
    n_ctx            (cparams.n_ctx),
    n_head           (hparams.n_head()),
    n_head_kv        (hparams.n_head_kv()),
    n_embd_head_k    (hparams.n_embd_head_k),
    n_embd_k_gqa     (hparams.n_embd_k_gqa()),
    n_embd_head_v    (hparams.n_embd_head_v),
    n_embd_v_gqa     (hparams.n_embd_v_gqa()),
    n_expert         (hparams.n_expert),
    n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
    freq_base        (cparams.rope_freq_base),
    freq_scale       (cparams.rope_freq_scale),
    ext_factor       (cparams.yarn_ext_factor),
    attn_factor      (cparams.yarn_attn_factor),
    beta_fast        (cparams.yarn_beta_fast),
    beta_slow        (cparams.yarn_beta_slow),
    norm_eps         (hparams.f_norm_eps),
    norm_rms_eps     (hparams.f_norm_rms_eps),
    n_tokens         (ubatch.n_tokens),
    n_outputs        (params.n_outputs),
    n_ctx_orig       (cparams.n_ctx_orig_yarn),
    pooling_type     (cparams.pooling_type),
    rope_type        (hparams.rope_type),
    sched            (params.sched),
    backend_cpu      (params.backend_cpu),
    cvec             (params.cvec),
    loras            (params.loras),
588
    mctx             (params.mctx),
589
590
    cross            (params.cross),
    cb_func          (params.cb),
591
592
593
594
    res              (params.res),
    ctx0             (res->get_ctx()),
    gf               (res->get_gf()) {
        res->set_params(params);
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    }

void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
    if (cb_func) {
        cb_func(ubatch, cur, name, il);
    }
}

ggml_tensor * llm_graph_context::build_cvec(
         ggml_tensor * cur,
                 int   il) const {
    return cvec->apply_to(ctx0, cur, il);
}

ggml_tensor * llm_graph_context::build_lora_mm(
          ggml_tensor * w,
          ggml_tensor * cur) const {
    ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);

    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float adapter_scale = lora.second;
        const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

        ggml_tensor * ab_cur = ggml_mul_mat(
                ctx0, lw->b,
                ggml_mul_mat(ctx0, lw->a, cur)
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_lora_mm_id(
          ggml_tensor * w,   // ggml_tensor * as
          ggml_tensor * cur, // ggml_tensor * b
          ggml_tensor * ids) const {
    ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float alpha = lora.first->alpha;
        const float rank  = (float) lw->b->ne[0];
        const float scale = alpha ? lora.second * alpha / rank : lora.second;

        ggml_tensor * ab_cur = ggml_mul_mat_id(
                ctx0, lw->b,
                ggml_mul_mat_id(ctx0, lw->a, cur, ids),
                ids
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_norm(
         ggml_tensor * cur,
         ggml_tensor * mw,
         ggml_tensor * mb,
       llm_norm_type   type,
                 int   il) const {
    switch (type) {
        case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
        case LLM_NORM_GROUP:
            {
                cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
                cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
                cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
            } break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx0, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx0, cur, mb);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_ffn(
         ggml_tensor * cur,
         ggml_tensor * up,
         ggml_tensor * up_b,
         ggml_tensor * up_s,
         ggml_tensor * gate,
         ggml_tensor * gate_b,
         ggml_tensor * gate_s,
         ggml_tensor * down,
         ggml_tensor * down_b,
         ggml_tensor * down_s,
         ggml_tensor * act_scales,
     llm_ffn_op_type   type_op,
   llm_ffn_gate_type   type_gate,
                 int   il) const {
    ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx0, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx0, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = build_lora_mm(gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = build_lora_mm(gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx0, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx0, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
756
757
758
759
760
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_swiglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_swiglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
761
762
763
764
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
765
766
767
768
769
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_geglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_geglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
770
771
772
773
774
775
776
777
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx0, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
778
779
780
781
782
            if (gate && type_gate == LLM_FFN_PAR) {
                cur = ggml_reglu_split(ctx0, cur, tmp);
                cb(cur, "ffn_reglu", il);
                type_gate = LLM_FFN_SEQ;
            } else {
783
784
785
786
787
788
789
790
791
792
793
794
795
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
796
797
798
799
800
801
802
803
804
805
806
807
                cur = ggml_swiglu(ctx0, cur);
                cb(cur, "ffn_swiglu", il);
            } break;
        case LLM_FFN_GEGLU:
            {
                cur = ggml_geglu(ctx0, cur);
                cb(cur, "ffn_geglu", il);
            } break;
        case LLM_FFN_REGLU:
            {
                cur = ggml_reglu(ctx0, cur);
                cb(cur, "ffn_reglu", il);
808
            } break;
809
810
        default:
            GGML_ABORT("fatal error");
811
812
    }

813
    if (gate && type_gate == LLM_FFN_PAR) {
814
815
816
817
818
819
        cur = ggml_mul(ctx0, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = build_lora_mm(down, cur);
820
821
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
822
823
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx0, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx0, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * up_exps,
         ggml_tensor * gate_exps,
         ggml_tensor * down_exps,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
         llama_expert_gating_func_type gating_op,
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
                 int   il,
         ggml_tensor * probs_in) const {
    return build_moe_ffn(
        cur,
        gate_inp,  /* gate_inp_b  */ nullptr,
        up_exps,   /* up_exps_b   */ nullptr,
        gate_exps, /* gate_exps_b */ nullptr,
        down_exps, /* down_exps_b */ nullptr,
        exp_probs_b,
        n_expert,
        n_expert_used,
        type_op,
        norm_w,
        scale_w,
        w_scale,
        gating_op,
        il,
        probs_in
    );
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * gate_inp_b,
         ggml_tensor * up_exps,
         ggml_tensor * up_exps_b,
         ggml_tensor * gate_exps,
         ggml_tensor * gate_exps_b,
         ggml_tensor * down_exps,
         ggml_tensor * down_exps_b,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
        llama_expert_gating_func_type gating_op,
                 int   il,
         ggml_tensor * probs_in) const {
897
898
899
900
    const int64_t n_embd   = cur->ne[0];
    const int64_t n_tokens = cur->ne[1];
    const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN

901
902
903
904
905
906
907
908
909
910
911
912
913
    ggml_tensor * logits = nullptr;

    if (probs_in == nullptr) {
        logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
        cb(logits, "ffn_moe_logits", il);
    } else {
        logits = probs_in;
    }

    if (gate_inp_b) {
        logits = ggml_add(ctx0, logits, gate_inp_b);
        cb(logits, "ffn_moe_logits_biased", il);
    }
914
915
916
917
918
919
920
921
922
923
924

    ggml_tensor * probs = nullptr;
    switch (gating_op) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
            {
                probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
            } break;
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
            {
                probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
            } break;
925
926
927
928
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
            {
                probs = logits; // [n_expert, n_tokens]
            } break;
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        default:
            GGML_ABORT("fatal error");
    }
    cb(probs, "ffn_moe_probs", il);

    // add experts selection bias - introduced in DeepSeek V3
    // leave probs unbiased as it's later used to get expert weights
    ggml_tensor * selection_probs = probs;
    if (exp_probs_b != nullptr) {
        selection_probs = ggml_add(ctx0, probs, exp_probs_b);
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

    // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
    // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
    if (arch == LLM_ARCH_LLAMA4) {
        selection_probs = logits;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
948
949
950
951
952
    if (arch == LLM_ARCH_GROVEMOE) {
        selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    // select top n_group_used expert groups
    // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457
    if (hparams.n_expert_groups > 1 && n_tokens > 0) {
        const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups;

        // organize experts into n_expert_groups
        ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]

        ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
        group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]

        // get top n_group_used expert groups
        group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
        group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]

        ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
        cb(expert_groups, "ffn_moe_group_topk", il);

        // mask out the other groups
        selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
        selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
        selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
        cb(selection_probs, "ffn_moe_probs_masked", il);
    }

978
979
980
981
982
    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
983
984
985
986
987
988
989
990
991
992
    if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) {
        // TODO: Use scalar div instead when/if implemented
        ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32);
        selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32);
        probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens);
    } else {
        probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens);
    }

    ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens]
993
994
    cb(weights, "ffn_moe_weights", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
995

996
997
998
999
1000
1001
1002
    if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
        weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
        cb(weights, "ffn_moe_weights_softmax", il);
    }

1003
1004
1005
1006
1007
1008
    if (norm_w) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1009
1010
1011
1012
1013
        if (arch == LLM_ARCH_BAILINGMOE2) {
            weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
            cb(weights_sum, "ffn_moe_weights_sum_biased", il);
        }

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx0, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1024
1025
1026
    //call early so that topk-moe can be used
    ggml_build_forward_expand(gf, weights);

1027
1028
1029
    cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);

    if (weight_before_ffn) {
1030
1031
        // repeat cur to [n_embd, n_expert_used, n_tokens]
        ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
1032
1033
1034
1035
1036
1037
1038
        cur = ggml_mul(ctx0, repeated, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

1039
1040
1041
1042
1043
    if (up_exps_b) {
        up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
        cb(up, "ffn_moe_up_biased", il);
    }

1044
1045
1046
1047
1048
1049
1050
    ggml_tensor * experts = nullptr;
    if (gate_exps) {
        cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate", il);
    } else {
        cur = up;
    }
1051

1052
1053
1054
1055
1056
    if (gate_exps_b) {
        cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
        cb(cur, "ffn_moe_gate_biased", il);
    }

1057
1058
    switch (type_op) {
        case LLM_FFN_SILU:
1059
1060
1061
1062
            if (gate_exps) {
                cur = ggml_swiglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_swiglu", il);
            } else {
1063
1064
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_moe_silu", il);
1065
1066
            } break;
        case LLM_FFN_GELU:
1067
1068
1069
1070
            if (gate_exps) {
                cur = ggml_geglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_geglu", il);
            } else {
1071
1072
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_moe_gelu", il);
1073
            } break;
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        case LLM_FFN_SWIGLU_OAI_MOE:
            {
                // TODO: move to hparams?
                constexpr float alpha = 1.702f;
                constexpr float limit = 7.0f;
                cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
                cb(cur, "ffn_moe_swiglu_oai", il);
            } break;
        case LLM_FFN_RELU:
            if (gate_exps) {
                cur = ggml_reglu_split(ctx0, cur, up);
                cb(cur, "ffn_moe_reglu", il);
            } else {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_moe_relu", il);
            } break;
1090
1091
1092
1093
        default:
            GGML_ABORT("fatal error");
    }

1094
    experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
1095
1096
    cb(experts, "ffn_moe_down", il);

1097
1098
1099
1100
1101
    if (down_exps_b) {
        experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
        cb(experts, "ffn_moe_down_biased", il);
    }

1102
1103
1104
1105
1106
    if (!weight_before_ffn) {
        experts = ggml_mul(ctx0, experts, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };

    assert(n_expert_used > 0);

    // order the views before the adds
    for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
        cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);

        ggml_build_forward_expand(gf, cur_experts[i]);
    }

1118
    // aggregate experts
1119
1120
1121
1122
    // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
    //       to avoid potentially a large number of add nodes during warmup
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14753
    ggml_tensor * moe_out = cur_experts[0];
1123

1124
1125
    for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
        moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
1126
1127
    }

1128
    if (hparams.n_expert_used == 1) {
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx0, moe_out);
    }

    cb(moe_out, "ffn_moe_out", il);

    return moe_out;
}

// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
    const int64_t n_embd = hparams.n_embd;

    auto inp = std::make_unique<llm_graph_input_embd>();

    ggml_tensor * cur = nullptr;

    if (ubatch.token) {
        inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
        //cb(inp->tokens, "inp_tokens", -1);
        ggml_set_input(inp->tokens);
1150
        res->t_tokens = inp->tokens;
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

        cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);

        // apply lora for embedding tokens if needed
        for (const auto & lora : *loras) {
            llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
            if (lw == nullptr) {
                continue;
            }

            const float adapter_scale = lora.second;
            const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

            ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
                        ctx0, lw->b, // non-transposed lora_b
                        ggml_get_rows(ctx0, lw->a, inp->tokens)
                        ), scale);

            cur = ggml_add(ctx0, cur, inpL_delta);
        }
    } else {
        inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
        ggml_set_input(inp->embd);

        cur = inp->embd;
    }

    // For Granite architecture
    if (hparams.f_embedding_scale != 0.0f) {
        cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
    }

    cb(cur, "inp_embd", -1);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos() const {
1191
    auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
1192
1193
1194

    auto & cur = inp->pos;

1195
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
1196
1197
1198
1199
1200
1201
1202
1203
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
1204
    auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
1205
1206
1207

    auto & cur = inp->attn_scale;

1208
1209
    // this need to be 1x1xN for broadcasting
    cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
1210
1211
1212
1213
1214
1215
1216
1217
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_out_ids() const {
1218
1219
1220
1221
1222
1223
1224
1225
    // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
    //       but this would make the graph topology depend on the number of output tokens, which can interere with
    //       features that require constant topology such as pipline parallelism
    //       ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
    //if (n_outputs < n_tokens) {
    //    return nullptr;
    //}

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);

    auto & cur = inp->out_ids;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_mean() const {
    auto inp = std::make_unique<llm_graph_input_mean>(cparams);

    auto & cur = inp->mean;

1243
    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
1244
1245
1246
1247
1248
1249
1250
1251
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cls() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1252
    auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
1253
1254
1255

    auto & cur = inp->cls;

1256
    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
    auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);

    auto & cur = inp->cross_embd;

    // if we have the output embeddings from the encoder, use them directly
    // TODO: needs more work to be correct, for now just use the tensor shape
    //if (cross->t_embd) {
    //    cur = ggml_view_tensor(ctx0, cross->t_embd);

    //    return cur;
    //}

    const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
    const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
    auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1302
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1303

1304
    auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
1305

1306
    const auto n_kv = mctx_cur->get_n_kv();
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
    ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
    cb(pos_bucket_1d, "pos_bucket_1d", -1);

    ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);

    pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
    pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
    pos_bias = ggml_cont      (ctx0, pos_bias);

    cb(pos_bias, "pos_bias", -1);

    return pos_bias;
}

ggml_tensor * llm_graph_context::build_attn_mha(
         ggml_tensor * q,
         ggml_tensor * k,
         ggml_tensor * v,
         ggml_tensor * kq_b,
         ggml_tensor * kq_mask,
1339
         ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1340
1341
1342
         ggml_tensor * v_mla,
               float   kq_scale,
                 int   il) const {
1343
1344
1345
1346
    const bool v_trans = v->nb[1] > v->nb[2];

    // split the batch into streams if needed
    const auto n_stream = k->ne[3];
1347

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1348
    q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
1349

1350
1351
1352
    q = ggml_permute(ctx0, q, 0, 2, 1, 3);
    k = ggml_permute(ctx0, k, 0, 2, 1, 3);
    v = ggml_permute(ctx0, v, 0, 2, 1, 3);
1353
1354
1355

    ggml_tensor * cur;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1356
    if (cparams.flash_attn && kq_b == nullptr) {
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
        GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");

        if (v_trans) {
            v = ggml_transpose(ctx0, v);
        }

        // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
        if (k->type == GGML_TYPE_F32) {
            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
        }

        if (v->type == GGML_TYPE_F32) {
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
        }

        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1374
        cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
1375

1376
1377
        ggml_flash_attn_ext_add_sinks(cur, sinks);
        ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
1378

1379
        if (v_mla) {
1380
1381
1382
#if 0
            // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
            // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
1383
1384
            cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
1385
1386
1387
1388
1389
#else
            // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
            // The permutations are noops and only change how the tensor data is interpreted.
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1390
            cb(cur, "fattn_mla", il);
1391
1392
1393
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
1394
1395
        }

1396
        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1397
1398
    } else {
        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1399
        cb(kq, "kq", il);
1400
1401
1402
1403
1404
1405
1406

        // note: this op tends to require high floating point range
        //       while for some models F16 is enough, for others it is not, so we default to F32 here
        ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

        if (arch == LLM_ARCH_GROK) {
            // need to do the following:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1407
            // multiply by attn_output_multiplier
1408
1409
1410
1411
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1412
1413
1414
1415
            kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
            cb(kq, "kq_tanh", il);
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
            cb(kq, "kq_scaled", il);
1416
1417
1418
1419
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1420
            cb(kq, "kq_scaled_1", il);
1421
            kq = ggml_tanh (ctx0, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1422
            cb(kq, "kq_tanh", il);
1423
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1424
            cb(kq, "kq_scaled_2", il);
1425
1426
1427
1428
        }

        if (kq_b) {
            kq = ggml_add(ctx0, kq, kq_b);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1429
            cb(kq, "kq_plus_kq_b", il);
1430
1431
1432
        }

        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
1433
        ggml_soft_max_add_sinks(kq, sinks);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1434
        cb(kq, "kq_soft_max", il);
1435
1436
1437
1438

        if (!v_trans) {
            // note: avoid this branch
            v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1439
            cb(v, "v_cont", il);
1440
1441
1442
        }

        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1443
        cb(kqv, "kqv", il);
1444

1445
1446
1447
        // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
        if (v_mla) {
            kqv = ggml_mul_mat(ctx0, v_mla, kqv);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1448
            cb(kqv, "kqv_mla", il);
1449
1450
1451
        }

        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
1452

1453
1454
        // recombine streams
        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

        if (!cparams.offload_kqv) {
            // all nodes between the KV store and the attention output are run on the CPU
            ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
        }
    }

    ggml_build_forward_expand(gf, cur);

    return cur;
}

llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
    auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);

    // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1471
1472
    inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
    ggml_set_input(inp->self_kq_mask);
1473

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;

    if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
        ggml_set_input(inp->self_kq_mask_swa);

        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    } else {
        inp->self_kq_mask_swa     = nullptr;
        inp->self_kq_mask_swa_cnv = nullptr;
    }
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

    return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_no_cache * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1497
        ggml_tensor * sinks,
1498
        ggml_tensor * v_mla,
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
            float     kq_scale,
            int       il) const {
    GGML_UNUSED(n_tokens);

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1509
1510
1511
    const bool is_swa = hparams.is_swa(il);

    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
1512

1513
1514
    // [TAG_NO_CACHE_PAD]
    // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1515
1516
    //       but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
    //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
1517

1518
1519
1520
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1521

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1522
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1540
static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
1541
1542
1543
1544
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_hparams & hparams,
    const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1545
    const llama_kv_cache_context * mctx_cur) {
1546

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1547
    auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
1548

1549
    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1550
        GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
1551

1552
1553
1554
        const auto n_kv     = mctx_cur->get_n_kv();
        const auto n_tokens = ubatch.n_tokens;
        const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1555

1556
1557
        inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
1558

1559
1560
        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1561

1562
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1563
1564
    }

1565
1566
1567
    return inp;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1568
1569
llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
1570

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1571
    auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
1572

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1573
    return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
1574
1575
1576
}

ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1577
        llm_graph_input_attn_kv * inp,
1578
1579
1580
1581
1582
1583
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1584
        ggml_tensor * sinks,
1585
        ggml_tensor * v_mla,
1586
1587
1588
1589
1590
1591
1592
1593
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

1594
    const auto * mctx_cur = inp->mctx;
1595

1596
1597
1598
1599
    // store to KV cache
    {
        const auto & k_idxs = inp->get_k_idxs();
        const auto & v_idxs = inp->get_v_idxs();
1600

1601
1602
1603
        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }
1604

1605
    const auto & kq_mask = inp->get_kq_mask();
1606

1607
1608
1609
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1610

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1611
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1612
    cb(cur, "kqv_out", il);
1613

1614
1615
1616
1617
1618
1619
1620
    if (wo) {
        cur = build_lora_mm(wo, cur);
        if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
            // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }
1621

1622
1623
1624
    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }
1625

1626
1627
    return cur;
}
1628

1629
ggml_tensor * llm_graph_context::build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1630
        llm_graph_input_attn_kv_iswa * inp,
1631
1632
1633
1634
1635
1636
1637
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * sinks,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1638
        ggml_tensor * v_mla,
1639
1640
1641
1642
1643
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
1644

1645
1646
1647
    if (k_cur) {
        ggml_build_forward_expand(gf, k_cur);
    }
1648

1649
1650
    if (v_cur) {
        ggml_build_forward_expand(gf, v_cur);
1651
1652
    }

1653
1654
    const auto * mctx_iswa = inp->mctx;

1655
1656
    const bool is_swa = hparams.is_swa(il);

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
    const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();

    // optionally store to KV cache
    if (k_cur) {
        const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
    }

    if (v_cur) {
        const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();

        ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
    }

1672
1673
    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();

1674
1675
1676
1677
    ggml_tensor * q = q_cur;
    ggml_tensor * k = mctx_cur->get_k(ctx0, il);
    ggml_tensor * v = mctx_cur->get_v(ctx0, il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1678
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
    auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);

    const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

1701
    inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
    ggml_set_input(inp->cross_kq_mask);

    inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;

    return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_cross * inp,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1717
        ggml_tensor * sinks,
1718
        ggml_tensor * v_mla,
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask_cross();

1729
1730
1731
    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;
1732

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1733
    ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

1751
1752
1753
// TODO: maybe separate the inner implementation into a separate function
//       like with the non-sliding window equivalent
//       once sliding-window hybrid caches are a thing.
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1754
1755
llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
    const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
1756

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1757
    auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
1758

1759
    const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
1760

1761
1762
1763
1764
1765
1766
1767
1768
    {
        const auto n_kv = mctx_cur->get_base()->get_n_kv();

        inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask);
1769

1770
1771
1772
1773
        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1774
        GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
1775
1776
1777
1778
1779
1780
1781
1782

        const auto n_kv = mctx_cur->get_swa()->get_n_kv();

        inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
        inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);

        inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
        ggml_set_input(inp->self_kq_mask_swa);
1783

1784
1785
1786
        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1787
    return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
}

ggml_tensor * llm_graph_context::build_rs(
        ggml_tensor * s,
        ggml_tensor * state_copy_main,
        ggml_tensor * state_copy_extra,
            int32_t   state_size,
            int32_t   n_seqs,
           uint32_t   n_rs,
           uint32_t   rs_head,
           uint32_t   rs_size,
            int32_t   rs_zero,
        const llm_graph_get_rows_fn & get_state_rows) const {

    ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);

    // Clear a single state which will then be copied to the other cleared states.
    // Note that this is a no-op when the view is zero-sized.
    ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
    ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
    // {state_size, rs_size} -> {state_size, n_seqs}
    ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
    ggml_build_forward_expand(gf, output_states);

    // copy extra states which won't be changed further (between n_seqs and n_rs)
    ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
1817
1818
    ggml_build_forward_expand(gf,
        ggml_cpy(ctx0,
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
            states_extra,
            ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));

    return output_states;
}

static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
           ggml_context * ctx0,
     const llama_ubatch & ubatch,
    const llama_memory_recurrent_context * mctx_cur) {

    auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);

    const int64_t n_rs   = mctx_cur->get_n_rs();
    const int64_t n_seqs = ubatch.n_seqs;

    inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
    ggml_set_input(inp->s_copy);

    inp->s_copy_main  = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
    inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);

    return inp;
}

llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);

    auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);

    return (llm_graph_input_rs *) res->add_input(std::move(inp));
}
1851

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
ggml_tensor * llm_graph_context::build_rs(
        llm_graph_input_rs * inp,
        ggml_tensor * s,
            int32_t   state_size,
            int32_t   n_seqs,
        const llm_graph_get_rows_fn & get_state_rows) const {
    const auto * kv_state = inp->mctx;

    return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
                    kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
                    get_state_rows);
1863
1864
1865
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
1866
1867
1868
1869
    llm_graph_input_rs * inp,
    const llama_ubatch & ubatch,
                   int   il) const {
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1870
1871
1872
1873
1874

    const auto token_shift_count = hparams.token_shift_count;

    const int64_t n_seqs  = ubatch.n_seqs;

1875
    ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
1876

1877
1878
1879
    ggml_tensor * token_shift = build_rs(
            inp, token_shift_all,
            hparams.n_embd_r(), n_seqs);
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

    token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

    return token_shift;
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
         ggml_tensor * token_shift,
  const llama_ubatch & ubatch,
                 int   il) const {
1890
    const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1891
1892
1893
1894
1895
1896

    const auto token_shift_count = hparams.token_shift_count;
    const auto n_embd = hparams.n_embd;

    const int64_t n_seqs = ubatch.n_seqs;

1897
    const auto kv_head = mctx_cur->get_head();
1898
1899
1900
1901

    return ggml_cpy(
        ctx0,
        ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
1902
        ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
1903
1904
1905
    );
}

1906
1907
1908
1909
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
    const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);

    auto inp_rs   = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1910
    auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
1911
1912
1913
1914
1915
1916

    auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);

    return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}

1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
void llm_graph_context::build_dense_out(
    ggml_tensor * dense_2,
    ggml_tensor * dense_3) const {
    if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) {
        return;
    }
    ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd;
    GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd");

    cur = ggml_mul_mat(ctx0, dense_2, cur);
    cur = ggml_mul_mat(ctx0, dense_3, cur);
    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;
    ggml_build_forward_expand(gf, cur);
}


1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
void llm_graph_context::build_pooling(
        ggml_tensor * cls,
        ggml_tensor * cls_b,
        ggml_tensor * cls_out,
        ggml_tensor * cls_out_b) const {
    if (!cparams.embeddings) {
        return;
    }

    ggml_tensor * inp = res->t_embd;

    //// find result_norm tensor for input
    //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
    //    inp = ggml_graph_node(gf, i);
    //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
    //        break;
    //    }

    //    inp = nullptr;
    //}

    GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

    ggml_tensor * cur;

    switch (pooling_type) {
        case LLAMA_POOLING_TYPE_NONE:
            {
                cur = inp;
            } break;
        case LLAMA_POOLING_TYPE_MEAN:
            {
                ggml_tensor * inp_mean = build_inp_mean();
                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
            } break;
        case LLAMA_POOLING_TYPE_CLS:
        case LLAMA_POOLING_TYPE_LAST:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                cur = ggml_get_rows(ctx0, inp, inp_cls);
            } break;
        case LLAMA_POOLING_TYPE_RANK:
            {
                ggml_tensor * inp_cls = build_inp_cls();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1978
                cur = ggml_get_rows(ctx0, inp, inp_cls);
1979

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1980
1981
                // classification head
                // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
1982
                if (cls) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1983
                    cur = ggml_mul_mat(ctx0, cls, cur);
1984
1985
1986
1987
                    if (cls_b) {
                        cur = ggml_add(ctx0, cur, cls_b);
                    }
                    cur = ggml_tanh(ctx0, cur);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1988
                }
1989

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1990
1991
1992
1993
1994
1995
                // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
                // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
                // Single layer classification head (direct projection)
                // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
                if (cls_out) {
                    cur = ggml_mul_mat(ctx0, cls_out, cur);
1996
1997
1998
                    if (cls_out_b) {
                        cur = ggml_add(ctx0, cur, cls_out_b);
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1999
2000
2001
2002
2003
                }

                // softmax for qwen3 reranker
                if (arch == LLM_ARCH_QWEN3) {
                    cur = ggml_soft_max(ctx0, cur);
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
                }
            } break;
        default:
            {
                GGML_ABORT("unknown pooling type");
            }
    }

    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;

    ggml_build_forward_expand(gf, cur);
}
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;

    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
        relative_position = abs(relative_position);
    } else {
        relative_position = -std::min<int32_t>(relative_position, 0);
    }

    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);

    return relative_bucket;
}