model.go 6.78 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
package gemma2

import (
	"math"

6
	"github.com/ollama/ollama/fs"
Patrick Devine's avatar
Patrick Devine committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeBase, ropeScale         float32
	attnLogitSoftcap                 float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type Model struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"` // just set to token_embd?

	*Options
}

const (
	gemma27BLayerCount = 46
)

39
func New(c fs.Config) (model.Model, error) {
Patrick Devine's avatar
Patrick Devine committed
40
41
42
43
44
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
Michael Yang's avatar
Michael Yang committed
45
				Types:  c.Ints("tokenizer.ggml.token_type"),
Patrick Devine's avatar
Patrick Devine committed
46
47
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
Michael Yang's avatar
Michael Yang committed
48
49
				// TODO: set EOT to EOS otherwise 0 will stop generation
				EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
Patrick Devine's avatar
Patrick Devine committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize:        int(c.Uint("embedding_length")),
			numHeads:          int(c.Uint("attention.head_count")),
			numKVHeads:        int(c.Uint("attention.head_count_kv")),
			attnKeyLen:        int(c.Uint("attention.key_length")),
			attnValLen:        int(c.Uint("attention.value_length")),
			eps:               c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:          c.Float("rope.freq_base", 10000.0),
			ropeScale:         c.Float("rope.freq_scale", 1.0),
			attnLogitSoftcap:  c.Float("attn_logit_softcapping"),
			finalLogitSoftcap: c.Float("final_logit_softcapping"),
		},
	}

	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
Jesse Gross's avatar
Jesse Gross committed
69
	m.Cache.SetConfig(ml.CacheConfig{})
Patrick Devine's avatar
Patrick Devine committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

	return &m, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(2)

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	if opts.largeModelScaling {
Jesse Gross's avatar
Jesse Gross committed
90
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
Patrick Devine's avatar
Patrick Devine committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)

Jesse Gross's avatar
Jesse Gross committed
105
106
	q = q.Permute(ctx, 0, 2, 1, 3)
	k = k.Permute(ctx, 0, 2, 1, 3)
Patrick Devine's avatar
Patrick Devine committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)

	// logit softcap
	kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
	kq = kq.Tanh(ctx)
	kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))

	kq = kq.Add(ctx, mask)
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *SelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *MLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

Jesse Gross's avatar
Jesse Gross committed
150
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Patrick Devine's avatar
Patrick Devine committed
151
152
153
154
155
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
Jesse Gross's avatar
Jesse Gross committed
156
157
158
159
160
161
162
163

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Patrick Devine's avatar
Patrick Devine committed
164
165
166
167
168
169
170
171
172
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

Jesse Gross's avatar
Jesse Gross committed
173
174
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
Patrick Devine's avatar
Patrick Devine committed
175
176
177
178
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
179
	outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
Jesse Gross's avatar
Jesse Gross committed
180
181
182
183
	if err != nil {
		return nil, err
	}

184
	hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Patrick Devine's avatar
Patrick Devine committed
185
186
187
188
189
190
191
192
193
194
195
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

	if len(m.Layers) == gemma27BLayerCount {
		m.Options.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		cacheType := i % 2
		m.Cache.SetLayer(i)
		wc := m.Cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
Jesse Gross's avatar
Jesse Gross committed
196
197
198
199
200
201
202

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Patrick Devine's avatar
Patrick Devine committed
203
204
205
206
207
208
209
210
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
211
	return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
Patrick Devine's avatar
Patrick Devine committed
212
213
214
215
216
}

func init() {
	model.Register("gemma2", New)
}