model.go 6.59 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
package gemma2

import (
	"math"

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeBase, ropeScale         float32
	attnLogitSoftcap                 float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type Model struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"` // just set to token_embd?

	*Options
}

const (
	gemma27BLayerCount = 46
)

func New(c ml.Config) (model.Model, error) {
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize:        int(c.Uint("embedding_length")),
			numHeads:          int(c.Uint("attention.head_count")),
			numKVHeads:        int(c.Uint("attention.head_count_kv")),
			attnKeyLen:        int(c.Uint("attention.key_length")),
			attnValLen:        int(c.Uint("attention.value_length")),
			eps:               c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:          c.Float("rope.freq_base", 10000.0),
			ropeScale:         c.Float("rope.freq_scale", 1.0),
			attnLogitSoftcap:  c.Float("attn_logit_softcapping"),
			finalLogitSoftcap: c.Float("final_logit_softcapping"),
		},
	}

	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))

	return &m, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(2)

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	if opts.largeModelScaling {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize / opts.numHeads)))
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)

	q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)

	// logit softcap
	kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
	kq = kq.Tanh(ctx)
	kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))

	kq = kq.Add(ctx, mask)
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *SelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *MLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
	if err != nil {
		return nil, err
	}

	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
	if err != nil {
		return nil, err
	}

	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

	if len(m.Layers) == gemma27BLayerCount {
		m.Options.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		cacheType := i % 2
		m.Cache.SetLayer(i)
		wc := m.Cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
		hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
	hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))

	outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
	if err != nil {
		return nil, err
	}

	return hiddenState.Rows(ctx, outputs), nil
}

func init() {
	model.Register("gemma2", New)
}