"tests/others/test_training.py" did not exist on "daddd98b880deb4117af794c65f3e87319fe9784"
causal_test.go 17.8 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
2
3
4
5
6
7
8
package kvcache

import (
	"math"
	"slices"
	"testing"

	"github.com/ollama/ollama/ml"
9
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
)

type testCase struct {
	name          string
	in            []float32
	inShape       []int
	seqs          []int
	pos           []int32
	expected      []float32
	expectedShape []int
	expectedMask  []float32
}

func TestStore(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

28
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			inShape:       []int{2, 3, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			expectedShape: []int{2, 3, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{115, 215, 125, 225, 135, 235},
			inShape:       []int{2, 3, 1},
			seqs:          []int{0},
			pos:           []int32{4},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
			expectedShape: []int{2, 3, 5},
			expectedMask:  []float32{0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestSWA(t *testing.T) {
	backend := &testBackend{}
	cache := NewSWACache(1, nil)
	defer cache.Close()

61
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
62
63
64

	tests := []testCase{
		{
65
			name:          "FirstBatch",
Jesse Gross's avatar
Jesse Gross committed
66
67
68
69
70
71
72
73
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
74
75
76
77
78
79
80
81
82
83
		{
			name:          "SecondBatch",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 0},
			pos:           []int32{4, 5},
			expected:      []float32{5, 6, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
		},
Jesse Gross's avatar
Jesse Gross committed
84
85
86
87
88
89
90
91
92
93
	}

	testCache(t, backend, cache, tests)
}

func TestSequences(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

94
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{2, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestRemove(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

129
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 1, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveEnd",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{1, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)

	err = cache.Remove(0, 0, 1)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveMiddle",
			in:            []float32{7, 8},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 0},
			pos:           []int32{1, 2},
			expected:      []float32{7, 8, 3, 4, 4},
			expectedShape: []int{1, 1, 5},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestDefrag(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

194
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			inShape:       []int{1, 1, 16},
			seqs:          []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
			expected:      []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 2, 4)
	if err != nil {
		panic(err)
	}

	err = cache.Remove(0, 13, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "Defrag",
			in:            []float32{17, 18, 19},
			inShape:       []int{1, 1, 3},
			seqs:          []int{0, 0, 0},
			pos:           []int32{16, 17, 18},
			expected:      []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestCopy(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
	defer cache.Close()

242
	cache.Init(backend, ml.DTypeF16, 1, 16, 16)
Jesse Gross's avatar
Jesse Gross committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	cache.CopyPrefix(0, 1, 2)

	tests = []testCase{
		{
			name:          "Copy",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{1, 1},
			pos:           []int32{3, 4},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
	for _, test := range tests {
		t.Run(test.name, func(t *testing.T) {
			context := backend.NewContext()
			defer context.Close()

283
			err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
Jesse Gross's avatar
Jesse Gross committed
284
285
286
287
288
289
290
291
292
293
			if err != nil {
				panic(err)
			}

			cache.SetLayer(0)
			tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
			cache.Put(context, tensor, tensor)

			out, _, mask := cache.Get(context)

294
			context.Forward(out, mask).Compute(out, mask)
Jesse Gross's avatar
Jesse Gross committed
295
296
297
298
299
300
301
302

			if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
				t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
			}
		})
	}
}

303
304
305
306
307
308
309
310
311
312
313
314
315
316
func TestCanResume(t *testing.T) {
	backend := &testBackend{}
	windowSize := int32(4)
	cache := NewSWACache(windowSize, nil)
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 1, 16, 16)

	context := backend.NewContext()
	defer context.Close()

	err := cache.StartForward(context, input.Batch{
		Positions: []int32{0, 1, 2, 3},
		Sequences: []int{0, 0, 0, 0},
317
	}, false)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
	if err != nil {
		t.Fatalf("StartForward failed: %v", err)
	}

	cache.SetLayer(0)
	tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
	cache.Put(context, tensor, tensor)

	// with window size 4, nothing has slid out of the window yet
	if !cache.CanResume(0, 0) {
		t.Errorf("CanResume(0, 0) = false, want true (within window)")
	}
	if !cache.CanResume(0, 1) {
		t.Errorf("CanResume(0, 1) = false, want true (within window)")
	}
	if !cache.CanResume(0, 2) {
		t.Errorf("CanResume(0, 2) = false, want true (within window)")
	}
	if !cache.CanResume(0, 3) {
		t.Errorf("CanResume(0, 3) = false, want true (latest position)")
	}

	// shift window by adding position 4
	err = cache.StartForward(context, input.Batch{
		Positions: []int32{4, 5},
		Sequences: []int{0, 0},
344
	}, false)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
	if err != nil {
		t.Fatalf("StartForward failed: %v", err)
	}

	cache.SetLayer(0)
	tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
	cache.Put(context, tensor, tensor)

	// only the latest position has overlapping windows
	if cache.CanResume(0, 0) {
		t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
	}
	if cache.CanResume(0, 1) {
		t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
	}
	if cache.CanResume(0, 2) {
		t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
	}
	if cache.CanResume(0, 3) {
		t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
	}
	if cache.CanResume(0, 4) {
		t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
	}
	if !cache.CanResume(0, 5) {
		t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
	}
}

Michael Yang's avatar
Michael Yang committed
374
375
type testBackend struct {
	ml.Backend
Jesse Gross's avatar
Jesse Gross committed
376
377
378
379
380
381
}

func (b *testBackend) NewContext() ml.Context {
	return &testContext{}
}

Michael Yang's avatar
Michael Yang committed
382
383
384
385
func (b *testBackend) NewContextSize(int) ml.Context {
	return &testContext{}
}

Michael Yang's avatar
Michael Yang committed
386
387
type testContext struct {
	ml.Context
388
389
}

390
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
391
392
393
394
395
396
397
398
399
400
401
402
	total := 0

	if len(shape) > 0 {
		total = 1
		for _, s := range shape {
			total *= s
		}
	}

	return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}

403
404
405
406
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
	return c.Empty(dtype, shape...)
}

Jesse Gross's avatar
Jesse Gross committed
407
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
408
	t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

	copy(t.data, s)

	return t, nil
}

func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
	f := make([]float32, len(s))
	for i := range f {
		f[i] = float32(s[i])
	}

	out, _ := c.FromFloatSlice(f, shape...)
	out.(*testTensor).dtype = ml.DTypeI32

	return out, nil
}

Michael Yang's avatar
arange  
Michael Yang committed
427
428
429
430
431
432
433
434
435
436
437
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
	s := make([]float32, 0, int((stop-start)/step))
	for i := start; i < stop; i += step {
		s = append(s, i)
	}

	out, _ := c.FromFloatSlice(s, len(s))
	out.(*testTensor).dtype = dtype
	return out
}

Michael Yang's avatar
Michael Yang committed
438
439
440
func (c *testContext) Input() ml.Context    { return c }
func (c *testContext) Layer(int) ml.Context { return c }

Michael Yang's avatar
Michael Yang committed
441
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
Jesse Gross's avatar
Jesse Gross committed
442
443
444

func (c *testContext) Compute(...ml.Tensor) {}

445
446
func (c *testContext) Reserve() error { return nil }

Michael Yang's avatar
Michael Yang committed
447
func (c *testContext) MaxGraphNodes() int {
Jesse Gross's avatar
Jesse Gross committed
448
449
450
451
452
453
	return 10
}

func (c *testContext) Close() {}

type testTensor struct {
Michael Yang's avatar
Michael Yang committed
454
455
	ml.Tensor

Jesse Gross's avatar
Jesse Gross committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
	dtype       ml.DType
	elementSize int
	data        []float32
	shape       []int
}

func (t *testTensor) Dim(n int) int {
	return t.shape[n]
}

func (t *testTensor) Stride(n int) int {
	stride := t.elementSize
	for i := range n {
		stride *= t.shape[i]
	}

	return stride
}

func (t *testTensor) Shape() []int {
	return t.shape
}

func (t *testTensor) DType() ml.DType {
	return t.dtype
}

func (t *testTensor) Floats() []float32 {
	out := make([]float32, len(t.data))
	copy(out, t.data)
	return out
}

489
490
491
492
493
494
495
496
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
	out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
	for i := range out.data {
		out.data[i] = -t.data[i]
	}
	return out
}

Jesse Gross's avatar
Jesse Gross committed
497
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
498
	out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

	for i := range out.data {
		out.data[i] = t.data[i] + t2.(*testTensor).data[i]
	}

	return out
}

func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	offset /= t.elementSize

	var s []int

	switch len(shape) {
	case 1:
		s = []int{shape[0]}
	case 5:
		s = []int{shape[0], shape[2], shape[4]}
	default:
		panic("unsupported number of dimensions")
	}

	context := &testContext{}

523
	view := context.Empty(t.dtype, s...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
524
525
526
527
528
529
530
531
532
	view.data = t.data[offset : offset+len(view.data)]

	return view
}

func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	copy(t2.(*testTensor).data, t.data)
	return nil
}