causal_test.go 17.1 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
package kvcache

import (
	"math"
	"slices"
	"testing"

	"github.com/ollama/ollama/ml"
)

type testCase struct {
	name          string
	in            []float32
	inShape       []int
	seqs          []int
	pos           []int32
	expected      []float32
	expectedShape []int
	expectedMask  []float32
}

func TestStore(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 16)

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			inShape:       []int{2, 3, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
			expectedShape: []int{2, 3, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{115, 215, 125, 225, 135, 235},
			inShape:       []int{2, 3, 1},
			seqs:          []int{0},
			pos:           []int32{4},
			expected:      []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
			expectedShape: []int{2, 3, 5},
			expectedMask:  []float32{0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestSWA(t *testing.T) {
	backend := &testBackend{}
	cache := NewSWACache(1, nil)
	defer cache.Close()

	cache.Init(backend, ml.DTypeF32, 16)

	tests := []testCase{
		{
			name:          "SlidingWindow",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestSequences(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(nil)
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 16)

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
		{
			name:          "SecondBatch",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{2, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestRemove(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 16)

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 1, 1},
			pos:           []int32{0, 1, 0, 1},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 1, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveEnd",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 1},
			pos:           []int32{1, 2},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)

	err = cache.Remove(0, 0, 1)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "RemoveMiddle",
			in:            []float32{7, 8},
			inShape:       []int{1, 1, 2},
			seqs:          []int{0, 0},
			pos:           []int32{1, 2},
			expected:      []float32{7, 8, 3, 4, 4},
			expectedShape: []int{1, 1, 5},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestDefrag(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
		return key.Add(ctx, shift), nil
	})
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 16)

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			inShape:       []int{1, 1, 16},
			seqs:          []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
			expected:      []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	err := cache.Remove(0, 2, 4)
	if err != nil {
		panic(err)
	}

	err = cache.Remove(0, 13, math.MaxInt32)
	if err != nil {
		panic(err)
	}

	tests = []testCase{
		{
			name:          "Defrag",
			in:            []float32{17, 18, 19},
			inShape:       []int{1, 1, 3},
			seqs:          []int{0, 0, 0},
			pos:           []int32{16, 17, 18},
			expected:      []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
			expectedShape: []int{1, 1, 16},
			expectedMask:  []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func TestCopy(t *testing.T) {
	backend := &testBackend{}
	cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
	defer cache.Close()

	cache.Init(backend, ml.DTypeF16, 16)

	tests := []testCase{
		{
			name:          "FirstBatch",
			in:            []float32{1, 2, 3, 4},
			inShape:       []int{1, 1, 4},
			seqs:          []int{0, 0, 0, 0},
			pos:           []int32{0, 1, 2, 3},
			expected:      []float32{1, 2, 3, 4},
			expectedShape: []int{1, 1, 4},
			expectedMask:  []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
		},
	}

	testCache(t, backend, cache, tests)

	cache.CopyPrefix(0, 1, 2)

	tests = []testCase{
		{
			name:          "Copy",
			in:            []float32{5, 6},
			inShape:       []int{1, 1, 2},
			seqs:          []int{1, 1},
			pos:           []int32{3, 4},
			expected:      []float32{1, 2, 3, 4, 5, 6},
			expectedShape: []int{1, 1, 6},
			expectedMask:  []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
		},
	}

	testCache(t, backend, cache, tests)
}

func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
	for _, test := range tests {
		t.Run(test.name, func(t *testing.T) {
			context := backend.NewContext()
			defer context.Close()

			err := cache.StartForward(context, test.pos, test.seqs)
			if err != nil {
				panic(err)
			}

			cache.SetLayer(0)
			tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
			cache.Put(context, tensor, tensor)

			out, _, mask := cache.Get(context)

283
			context.Forward(out, mask).Compute(out, mask)
Jesse Gross's avatar
Jesse Gross committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

			if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
				t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
			}
		})
	}
}

type testBackend struct{}

func (b *testBackend) Config() ml.Config {
	panic("not implemented")
}

func (b *testBackend) Get(name string) ml.Tensor {
	panic("not implemented")
}

func (b *testBackend) NewContext() ml.Context {
	return &testContext{}
}

Michael Yang's avatar
Michael Yang committed
306
307
308
309
func (b *testBackend) NewContextSize(int) ml.Context {
	return &testContext{}
}

310
311
312
313
func (b *testBackend) SystemInfo() string {
	return "not implemented"
}

Jesse Gross's avatar
Jesse Gross committed
314
315
type testContext struct{}

316
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
Jesse Gross's avatar
Jesse Gross committed
317
318
319
320
321
322
323
324
325
326
327
328
	total := 0

	if len(shape) > 0 {
		total = 1
		for _, s := range shape {
			total *= s
		}
	}

	return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}

329
330
331
332
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
	return c.Empty(dtype, shape...)
}

Jesse Gross's avatar
Jesse Gross committed
333
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
334
	t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

	copy(t.data, s)

	return t, nil
}

func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
	f := make([]float32, len(s))
	for i := range f {
		f[i] = float32(s[i])
	}

	out, _ := c.FromFloatSlice(f, shape...)
	out.(*testTensor).dtype = ml.DTypeI32

	return out, nil
}

Michael Yang's avatar
Michael Yang committed
353
354
355
356
func (c *testContext) Input() ml.Context    { return c }
func (c *testContext) Output() ml.Context   { return c }
func (c *testContext) Layer(int) ml.Context { return c }

Michael Yang's avatar
Michael Yang committed
357
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
Jesse Gross's avatar
Jesse Gross committed
358
359
360

func (c *testContext) Compute(...ml.Tensor) {}

Michael Yang's avatar
Michael Yang committed
361
func (c *testContext) MaxGraphNodes() int {
Jesse Gross's avatar
Jesse Gross committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
	return 10
}

func (c *testContext) Close() {}

type testTensor struct {
	dtype       ml.DType
	elementSize int
	data        []float32
	shape       []int
}

func (t *testTensor) Dim(n int) int {
	return t.shape[n]
}

func (t *testTensor) Stride(n int) int {
	stride := t.elementSize
	for i := range n {
		stride *= t.shape[i]
	}

	return stride
}

func (t *testTensor) Shape() []int {
	return t.shape
}

func (t *testTensor) DType() ml.DType {
	return t.dtype
}

func (t *testTensor) Bytes() []byte {
	panic("not implemented")
}

func (t *testTensor) Floats() []float32 {
	out := make([]float32, len(t.data))
	copy(out, t.data)
	return out
}

func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
406
	out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

	for i := range out.data {
		out.data[i] = t.data[i] + t2.(*testTensor).data[i]
	}

	return out
}

func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	offset /= t.elementSize

	var s []int

	switch len(shape) {
	case 1:
		s = []int{shape[0]}
	case 5:
		s = []int{shape[0], shape[2], shape[4]}
	default:
		panic("unsupported number of dimensions")
	}

	context := &testContext{}

483
	view := context.Empty(t.dtype, s...).(*testTensor)
Jesse Gross's avatar
Jesse Gross committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
	view.data = t.data[offset : offset+len(view.data)]

	return view
}

func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	panic("not implemented")
}

func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	copy(t2.(*testTensor).data, t.data)
	return nil
}