"mmdet3d/models/layers/pointnet_modules/paconv_sa_module.py" did not exist on "3870001ad33d09a3a691375c4bd2de7f56b29808"
runner.go 23.2 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3
4
5
6
7
8

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
9
	"hash/maphash"
10
11
12
13
14
15
16
17
18
19
20
21
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
22
	"unicode/utf8"
23

24
25
	"golang.org/x/sync/semaphore"

26
	"github.com/ollama/ollama/api"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
29
	"github.com/ollama/ollama/model"
30
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
31
32
33
34
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
35
36
37
)

type Sequence struct {
38
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
39
	// multimodal embeddings
40
	ctxs []ml.Context
41

42
43
44
45
	// batch index
	iBatch int

	// prompt inputs left to evaluate
46
	inputs []input.Input
47

Jesse Gross's avatar
Jesse Gross committed
48
	// inputs that have been added to a batch but not yet submitted to Forward
49
	pendingInputs []input.Input
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

66
67
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
68
69
70
71
72
73
74
75

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
76
	numKeep int32
77
78
79
80

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

81
	doneReason llm.DoneReason
82
83
84
85

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
86
	numPredicted        int
87
88
89
90
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
91
92
93
	numPredict int
	stop       []string
	numKeep    int32
94
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
95
	embedding  bool
96
97
}

98
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
99
100
101
102
	s.ready.Wait()

	startTime := time.Now()

103
	inputs, ctxs, err := s.inputs(prompt, images)
104
105
106
107
108
109
110
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
111
		params.numKeep = int32(len(inputs))
112
113
	}

114
115
116
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
117
118
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

147
		newInputs := inputs[:params.numKeep]
148
		newInputs = append(newInputs, inputs[promptStart:]...)
149
150

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
151
		inputs = newInputs
152
153
	}

Jesse Gross's avatar
Jesse Gross committed
154
	// TODO(jessegross): Ingest cached history for grammar
155
156

	return &Sequence{
157
		ctxs:                ctxs,
158
159
160
161
162
163
164
165
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
166
		sampler:             params.sampler,
167
168
169
170
171
172
173
174
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
175
// decoding images
176
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, []ml.Context, error) {
177
	var inputs []input.Input
178
179
	var ctxs []ml.Context

180
181
182
	var parts []string
	var matches [][]string

183
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
184

185
186
187
188
189
190
191
192
193
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
194
195
	for i, part := range parts {
		// text - tokenize
196
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
197
		if err != nil {
198
			return nil, nil, err
199
		}
200

201
		for _, t := range tokens {
202
			inputs = append(inputs, input.Input{Token: t})
203
204
		}

Jesse Gross's avatar
Jesse Gross committed
205
		// image - decode and store
206
207
208
209
210
211
212
213
214
215
216
217
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
218
				return nil, nil, fmt.Errorf("invalid image index: %d", n)
219
220
			}

221
			ctx := s.model.Backend().NewContext()
222
223
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
224
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
225
			if err != nil {
226
				return nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
227
228
			}

229
230
231
232
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

233
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
234
235
236
237
238
239
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
240
		inputs, err = multimodalProcessor.PostTokenize(inputs)
241
		if err != nil {
242
			return nil, nil, err
243
244
245
		}
	}

246
	return inputs, ctxs, nil
247
248
249
}

type Server struct {
250
251
252
253
254
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
255
	model model.Model
256

257
	// status for external health reporting - loading, ready to serve, etc.
258
	status llm.ServerStatus
259
260
261
262
263
264
265
266

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
267
	// TODO (jmorganca): make this n_batch
268
269
	batchSize int

270
271
272
273
274
275
276
277
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
278
279
	seqs []*Sequence

280
281
282
283
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

284
285
286
	// KV cache
	cache *InputCache

287
288
289
	// next sequence for prompt processing to avoid starvation
	nextSeq int

290
291
292
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
293
294
295
296
297
298
299
300
301
302
303
304
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
305
306
307
308
309
310
311
312
313
314
315
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
316
317
	}

318
319
320
321
322
323
324
325
326
327
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
328
329
}

330
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
331
332
333
334
335
336
337
338
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
339
	s.seqsSem.Release(1)
340
341
342
343
344
345
346
347
348
349
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
350
			err := s.processBatch()
351
352
353
			if err != nil {
				panic(err)
			}
354
355
356
357
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
358
func (s *Server) processBatch() error {
359
360
361
362
363
364
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

365
	var batchInputs []int32
Jesse Gross's avatar
Jesse Gross committed
366
	var batch input.Batch
367

368
369
370
371
372
373
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

374
375
376
377
378
		if seq == nil {
			continue
		}

		// if past the num predict limit
379
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
380
			s.removeSequence(seqIdx, llm.DoneReasonLength)
381
382
383
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
384
385
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
386
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
387
388
		}

389
390
		batchSize := s.batchSize

391
		for i, inp := range seq.inputs {
392
393
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
394
			// will cause a break if we have existing inputs.
395
396
397
398
399
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

400
401
402
403
404
405
406
407
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
408
409
				break
			}
Jesse Gross's avatar
Jesse Gross committed
410

411
412
413
414
415
416
417
418
419
420
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

				err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
				if err != nil {
421
422
423
424
425
426
427
428
429
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
						continue
					} else {
						return err
					}
430
431
432
				}
			}

433
			batchInputs = append(batchInputs, inp.Token)
434
			if inp.Multimodal != nil {
435
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
436
437
			}

Jesse Gross's avatar
Jesse Gross committed
438
439
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
440

Jesse Gross's avatar
Jesse Gross committed
441
			seq.iBatch = len(batch.Outputs)
442
			if i+1 == len(seq.inputs) {
443
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
444
			}
445
			seq.pendingInputs = append(seq.pendingInputs, inp)
446
		}
447
448

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
449
450
	}

451
452
453
454
455
456
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

457
	if len(batchInputs) == 0 {
458
		return nil
459
460
	}

Jesse Gross's avatar
Jesse Gross committed
461
462
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
463

464
	modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
465
	if err != nil {
466
		return fmt.Errorf("failed to decode batch: %w", err)
467
468
	}

469
	logits := modelOutput.Floats()
470

471
472
473
474
475
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
476
		// After calling Forward, pending inputs are now in the cache
477
478
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
479
			seq.pendingInputs = []input.Input{}
480
481
		}

482
483
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
484
485
486
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
487
488
489
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
490
491
		seq.numPredicted++
		if seq.numPredicted == 1 {
492
493
494
495
496
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
497
			// TODO(jessegross): Embedding support
498
			slog.Warn("generation of embedding outputs not yet supported")
499
			s.removeSequence(i, llm.DoneReasonStop)
500
			continue
501
502
503
		}

		// sample a token
Jesse Gross's avatar
Jesse Gross committed
504
		vocabSize := len(logits) / len(batch.Outputs)
505
506

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
507
		if err != nil {
508
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
509
		}
510
511

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
512
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
513
514
515
516
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

517
			s.removeSequence(i, llm.DoneReasonStop)
518
519
520
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
521
522
523
524
525
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

526
		seq.inputs = []input.Input{{Token: token}}
527
528
529
530

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
531
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
532
533
534
535
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
536
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
552

553
			s.removeSequence(i, llm.DoneReasonStop)
554
555
556
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
557
		if common.ContainsStopSuffix(sequence, seq.stop) {
558
559
560
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
561
		if common.IncompleteUnicode(sequence) {
562
563
564
565
			continue
		}

		if !flushPending(seq) {
566
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
567
568
		}
	}
569
570

	return nil
571
572
573
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
574
	var req llm.CompletionRequest
575
576
577
578
579
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

580
581
582
583
584
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

585
586
587
588
589
590
591
592
593
594
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

595
	var grammar *sample.GrammarSampler
596
597
	var err error
	if req.Grammar != "" {
598
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
599
600
601
602
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
603
		defer grammar.Free()
604
605
	}

606
	sampler := sample.NewSampler(
607
608
609
610
611
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
612
		grammar,
613
614
	)

615
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
616
617
618
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
619
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
620
		embedding:  false,
621
622
623
624
625
626
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

627
	// Ensure there is a place to put the sequence, released when removed from s.seqs
628
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
629
630
631
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
632
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
633
		}
634
635
636
		return
	}

637
	s.mu.Lock()
638
	found := false
639
640
	for i, sq := range s.seqs {
		if sq == nil {
641
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
642
643
			if err != nil {
				s.mu.Unlock()
644
				s.seqsSem.Release(1)
645
646
647
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
648

649
650
			s.seqs[i] = seq
			s.cond.Signal()
651
			found = true
652
653
654
655
656
			break
		}
	}
	s.mu.Unlock()

657
	if !found {
658
		s.seqsSem.Release(1)
659
660
661
662
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

663
664
665
666
667
668
669
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
670
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
671
672
673
674
675
676
677
678
679
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
680
681
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
682
					DoneReason:         seq.doneReason,
683
684
685
686
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
687
688
689
690
691
692
693
694
695
696
697
698
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
699
700
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
701
702
703
704
705
706
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

707
708
709
710
711
712
713
714
715
716
717
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

718
func (s *Server) reserveWorstCaseGraph() error {
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

	var batch input.Batch

	inputs := make([]int32, s.batchSize)
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
	for i := range inputs {
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

	var err error
	batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
	if err != nil {
		return err
	}

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

	err = ctx.Forward(t).Reserve()
	if err != nil {
		return err
	}

	return nil
761
}
762

763
func (s *Server) loadModel(
764
	ctx context.Context,
765
	mpath string,
766
	params ml.BackendParams,
767
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
768
	parallel int,
769
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
770
	kvSize int,
771
772
	multiUserCache bool,
) {
773
	var err error
774
	s.model, err = model.New(ctx, mpath, params)
775
776
777
	if err != nil {
		panic(err)
	}
778

Jesse Gross's avatar
Jesse Gross committed
779
	// TODO(jessegross): LoRA loading
780
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
781
		panic("loras are not yet implemented")
782
783
	}

784
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
785
786
787
	if err != nil {
		panic(err)
	}
788

Jesse Gross's avatar
Jesse Gross committed
789
790
791
792
793
794
795
796
797
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

798
	err = s.reserveWorstCaseGraph()
799
800
	if err != nil {
		panic(err)
801
	}
802

803
	s.status = llm.ServerStatusReady
804
805
806
	s.ready.Done()
}

807
808
809
810
811
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
812
813
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
814
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
815
816
817
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
818
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
819
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
820
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
821
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
822
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
823

824
	var lpaths multiLPath
825
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
826

827
828
829
830
831
832
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
Jesse Gross's avatar
Jesse Gross committed
850
	slog.Info("starting ollama engine")
851
852
853

	server := &Server{
		batchSize: *batchSize,
854
		status:    llm.ServerStatusLoadingModel,
855
856
	}

Jesse Gross's avatar
Jesse Gross committed
857
858
859
860
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

861
	var tensorSplitFloats []float32
862
	if *tensorSplit != "" {
863
864
865
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
866
			f, _ := strconv.ParseFloat(s, 32)
867
			tensorSplitFloats[i] = float32(f)
868
		}
869
870
871
	}

	params := ml.BackendParams{
872
873
874
		Progress: func(progress float32) {
			server.progress = progress
		},
875
876
877
878
879
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
880
	}
881
882
883

	server.ready.Add(1)
	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
884
885
	defer cancel()

886
887
888
889
	go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)

	server.cond = sync.NewCond(&server.mu)

890
891
892
893
894
895
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
896
		return err
897
898
899
900
	}
	defer listener.Close()

	mux := http.NewServeMux()
901
902
903
904
905
906
907
	// TODO: support embeddings
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
908
909
910
911
912
913
914
915

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
916
		return err
917
918
	}

919
	return nil
920
}