model.go 6.84 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
package gemma2

import (
	"math"

6
	"github.com/ollama/ollama/fs"
Patrick Devine's avatar
Patrick Devine committed
7
8
9
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
10
11
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
Patrick Devine's avatar
Patrick Devine committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeBase, ropeScale         float32
	attnLogitSoftcap                 float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type Model struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"` // just set to token_embd?

	*Options
}

const (
	gemma27BLayerCount = 46
)

41
func New(c fs.Config) (model.Model, error) {
Patrick Devine's avatar
Patrick Devine committed
42
43
44
45
46
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
Michael Yang's avatar
Michael Yang committed
47
				Types:  c.Ints("tokenizer.ggml.token_type"),
48
49
50
51
52
53
54
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
Patrick Devine's avatar
Patrick Devine committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize:        int(c.Uint("embedding_length")),
			numHeads:          int(c.Uint("attention.head_count")),
			numKVHeads:        int(c.Uint("attention.head_count_kv")),
			attnKeyLen:        int(c.Uint("attention.key_length")),
			attnValLen:        int(c.Uint("attention.value_length")),
			eps:               c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:          c.Float("rope.freq_base", 10000.0),
			ropeScale:         c.Float("rope.freq_scale", 1.0),
			attnLogitSoftcap:  c.Float("attn_logit_softcapping"),
			finalLogitSoftcap: c.Float("final_logit_softcapping"),
		},
	}

	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
Jesse Gross's avatar
Jesse Gross committed
74
	m.Cache.SetConfig(ml.CacheConfig{})
Patrick Devine's avatar
Patrick Devine committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

	return &m, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
91
	q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
Patrick Devine's avatar
Patrick Devine committed
92
93

	if opts.largeModelScaling {
Jesse Gross's avatar
Jesse Gross committed
94
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
Patrick Devine's avatar
Patrick Devine committed
95
96
97
98
99
100
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
101
	k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
Patrick Devine's avatar
Patrick Devine committed
102
103
104
105
106
107
108

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)

Jesse Gross's avatar
Jesse Gross committed
109
110
	q = q.Permute(ctx, 0, 2, 1, 3)
	k = k.Permute(ctx, 0, 2, 1, 3)
Patrick Devine's avatar
Patrick Devine committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)

	// logit softcap
	kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
	kq = kq.Tanh(ctx)
	kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))

	kq = kq.Add(ctx, mask)
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
131
	return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
Patrick Devine's avatar
Patrick Devine committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *SelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *MLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

Jesse Gross's avatar
Jesse Gross committed
154
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Patrick Devine's avatar
Patrick Devine committed
155
156
157
158
159
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
Jesse Gross's avatar
Jesse Gross committed
160
161
162
163
164
165
166
167

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Patrick Devine's avatar
Patrick Devine committed
168
169
170
171
172
173
174
175
176
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

Jesse Gross's avatar
Jesse Gross committed
177
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
178
179
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
	outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
Jesse Gross's avatar
Jesse Gross committed
180

181
	hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Patrick Devine's avatar
Patrick Devine committed
182
183
184
185
186
187
188
189
190
191
192
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

	if len(m.Layers) == gemma27BLayerCount {
		m.Options.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		cacheType := i % 2
		m.Cache.SetLayer(i)
		wc := m.Cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
Jesse Gross's avatar
Jesse Gross committed
193
194
195
196
197
198
199

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Patrick Devine's avatar
Patrick Devine committed
200
201
202
203
204
205
206
207
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
208
	return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
Patrick Devine's avatar
Patrick Devine committed
209
210
211
212
213
}

func init() {
	model.Register("gemma2", New)
}