model.go 6.86 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
package gemma2

import (
	"math"

6
	"github.com/ollama/ollama/fs"
Patrick Devine's avatar
Patrick Devine committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeBase, ropeScale         float32
	attnLogitSoftcap                 float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type Model struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"` // just set to token_embd?

	*Options
}

const (
	gemma27BLayerCount = 46
)

39
func New(c fs.Config) (model.Model, error) {
Patrick Devine's avatar
Patrick Devine committed
40
41
42
43
44
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
Michael Yang's avatar
Michael Yang committed
45
				Types:  c.Ints("tokenizer.ggml.token_type"),
46
47
48
49
50
51
52
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
Patrick Devine's avatar
Patrick Devine committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize:        int(c.Uint("embedding_length")),
			numHeads:          int(c.Uint("attention.head_count")),
			numKVHeads:        int(c.Uint("attention.head_count_kv")),
			attnKeyLen:        int(c.Uint("attention.key_length")),
			attnValLen:        int(c.Uint("attention.value_length")),
			eps:               c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:          c.Float("rope.freq_base", 10000.0),
			ropeScale:         c.Float("rope.freq_scale", 1.0),
			attnLogitSoftcap:  c.Float("attn_logit_softcapping"),
			finalLogitSoftcap: c.Float("final_logit_softcapping"),
		},
	}

	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
Jesse Gross's avatar
Jesse Gross committed
72
	m.Cache.SetConfig(ml.CacheConfig{})
Patrick Devine's avatar
Patrick Devine committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

	return &m, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(2)

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	if opts.largeModelScaling {
Jesse Gross's avatar
Jesse Gross committed
93
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
Patrick Devine's avatar
Patrick Devine committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)

Jesse Gross's avatar
Jesse Gross committed
108
109
	q = q.Permute(ctx, 0, 2, 1, 3)
	k = k.Permute(ctx, 0, 2, 1, 3)
Patrick Devine's avatar
Patrick Devine committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)

	// logit softcap
	kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
	kq = kq.Tanh(ctx)
	kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))

	kq = kq.Add(ctx, mask)
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *SelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *MLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

Jesse Gross's avatar
Jesse Gross committed
153
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Patrick Devine's avatar
Patrick Devine committed
154
155
156
157
158
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
Jesse Gross's avatar
Jesse Gross committed
159
160
161
162
163
164
165
166

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Patrick Devine's avatar
Patrick Devine committed
167
168
169
170
171
172
173
174
175
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

Jesse Gross's avatar
Jesse Gross committed
176
177
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
Patrick Devine's avatar
Patrick Devine committed
178
179
180
181
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
182
	outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
Jesse Gross's avatar
Jesse Gross committed
183
184
185
186
	if err != nil {
		return nil, err
	}

187
	hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Patrick Devine's avatar
Patrick Devine committed
188
189
190
191
192
193
194
195
196
197
198
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

	if len(m.Layers) == gemma27BLayerCount {
		m.Options.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		cacheType := i % 2
		m.Cache.SetLayer(i)
		wc := m.Cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
Jesse Gross's avatar
Jesse Gross committed
199
200
201
202
203
204
205

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Patrick Devine's avatar
Patrick Devine committed
206
207
208
209
210
211
212
213
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
214
	return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
Patrick Devine's avatar
Patrick Devine committed
215
216
217
218
219
}

func init() {
	model.Register("gemma2", New)
}