backend.go 11.1 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package ml

import (
	"bytes"
5
	"context"
Michael Yang's avatar
Michael Yang committed
6
7
	"encoding/binary"
	"fmt"
8
	"math"
Michael Yang's avatar
Michael Yang committed
9
	"slices"
Michael Yang's avatar
Michael Yang committed
10
11
12
	"strconv"
	"strings"

13
14
	"github.com/ollama/ollama/fs"
)
Michael Yang's avatar
Michael Yang committed
15
16

type Backend interface {
17
	Load(ctx context.Context, progress func(float32)) error
18
19
20
21

	// BackendMemory returns the memory allocations that were made for this model
	BackendMemory() BackendMemory

22
	Config() fs.Config
Michael Yang's avatar
Michael Yang committed
23
24
	Get(name string) Tensor
	NewContext() Context
25
	NewContextSize(size int) Context
Michael Yang's avatar
Michael Yang committed
26
27
}

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
47
48
49
50
51
52
53
54

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
55
56
}

57
58
59
60
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
61

62
63
64
65
66
67
68
69
	// MainGPU is the index of the primary GPU to use
	MainGPU int

	// NumGPULayers is the number of layers to offload to GPUs
	NumGPULayers int

	// TensorSplit is the fraction of the model to offload to each GPU
	TensorSplit []float32
70
71
72

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
73
74
}

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
	BackendMemory
}

func (e ErrNoMem) Error() string {
	return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}

type AllocationStatus int

const (
	// Unallocated memory - have not yet attempted to allocate
	Unallocated AllocationStatus = iota

	// Failed memory - tried to allocate the memory and did not succeed
	Failed

	// Allocated memory = tried and succeeded to allocate memory
	Allocated
)

// Memory is the size of an allocation and whether it was successful.
type Memory struct {
	Size   uint64
	Status AllocationStatus
}

func (m Memory) String() string {
	s := fmt.Sprint(m.Size)

	switch m.Status {
	case Unallocated:
		s += "U"
	case Failed:
		s += "F"
	case Allocated:
		s += "A"
	}

	return s
}

// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
	// Name is the name of the device as labeled by the backend. It
	// may not be persistent across instances of the runner.
	Name string

	// Weights is the per-layer memory needed for the model weights.
	Weights []Memory

	// Cache is the per-layer memory needed for the KV cache.
	Cache []Memory

	// Graph is the size of the compute graph. It is not per-layer.
	Graph Memory
}

// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
	// InputsWeights are always located on the CPU and cannot be moved
	InputWeights Memory

	// CPU model components are located in system memory. This does not
	// include unified memory allocated through the GPU.
	CPU DeviceMemory

	// GPU model components are located on one or more GPUs.
	GPUs []DeviceMemory
}

153
var backends = make(map[string]func(string, BackendParams) (Backend, error))
154

155
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
156
157
158
159
160
161
162
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

163
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
164
	if backend, ok := backends["ggml"]; ok {
165
		return backend(modelPath, params)
Michael Yang's avatar
Michael Yang committed
166
167
168
169
170
171
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
172
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
173
	Zeros(dtype DType, shape ...int) Tensor
174
175
	FromFloatSlice(s []float32, shape ...int) Tensor
	FromIntSlice(s []int32, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
176

Michael Yang's avatar
arange  
Michael Yang committed
177
178
179
	// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
	Arange(start, stop, step float32, dtype DType) Tensor

180
	Forward(...Tensor) Context
181
	Compute(...Tensor)
182
183
184
185
186

	// Reserve is analogous to Compute but rather than executing a
	// graph, simply preallocates memory. Typically called with a
	// worst case graph to ensure all resources are available for
	// for future inference.
187
	Reserve()
188

189
	MaxGraphNodes() int
190
	Close()
191

192
193
	// Input returns a context appropriate for creating tensors that are
	// inputs to the model (which includes things like output locations)
194
195
196
197
	Input() Context

	// Layer returns a context appropriate for creating intermediate tensors
	Layer(int) Context
Michael Yang's avatar
Michael Yang committed
198
199
200
}

type Tensor interface {
201
202
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
203

204
	Shape() []int
Michael Yang's avatar
Michael Yang committed
205
206
207
208
209
	DType() DType

	Bytes() []byte
	Floats() []float32

210
	Neg(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
211
212
	Add(ctx Context, t2 Tensor) Tensor
	Mul(ctx Context, t2 Tensor) Tensor
213
214
	Div(ctx Context, t2 Tensor) Tensor

Michael Yang's avatar
Michael Yang committed
215
	Mulmat(ctx Context, t2 Tensor) Tensor
216
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
217
	MulmatID(ctx Context, t2, ids Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
218
219
220
221
222

	Softmax(ctx Context) Tensor
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor
223
	SumRows(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
224

Michael Yang's avatar
Michael Yang committed
225
	AvgPool2D(ctx Context, k, s int, p float32) Tensor
Michael Yang's avatar
Michael Yang committed
226
	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
227

228
	IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
229

230
231
	Sin(ctx Context) Tensor
	Cos(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
232
233
234
	Tanh(ctx Context) Tensor
	GELU(ctx Context) Tensor
	SILU(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
235
	Sigmoid(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
236

237
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
238
239
240
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
	Contiguous(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
241
	Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Michael Yang's avatar
Michael Yang committed
242

243
	Pad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
244
245

	Stack(ctx Context, dim int, s ...Tensor) Tensor
246
247
248

	// Repeat repeats the tensor n times along dimension dim
	Repeat(ctx Context, dim, n int) Tensor
Michael Yang's avatar
Michael Yang committed
249
250
251
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
252
	Duplicate(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
253
254

	TopK(ctx Context, k int) Tensor
255
	Argsort(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
256
257
}

258
259
260
261
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
262
263
264
265
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
	ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor
}

Michael Yang's avatar
Michael Yang committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

298
type DumpOptions func(*dumpOptions)
Michael Yang's avatar
Michael Yang committed
299

300
301
302
303
304
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Precision = n
	}
Michael Yang's avatar
Michael Yang committed
305
306
}

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Threshold = n
	}
}

// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.EdgeItems = n
	}
}

type dumpOptions struct {
	Precision, Threshold, EdgeItems int
}

func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
	opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
	for _, optsFunc := range optsFuncs {
		optsFunc(&opts)
	}

	if mul(t.Shape()...) <= opts.Threshold {
		opts.EdgeItems = math.MaxInt
Michael Yang's avatar
Michael Yang committed
335
336
337
338
	}

	switch t.DType() {
	case DTypeF32:
339
340
		return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Jesse Gross's avatar
Jesse Gross committed
341
		})
342
	case DTypeF16, DTypeQ80, DTypeQ40:
343
		f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
344
		f32 = t.Copy(ctx, f32)
345
346
		return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Michael Yang's avatar
Michael Yang committed
347
348
		})
	case DTypeI32:
349
		return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
350
351
352
353
354
355
356
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
357
358
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
359
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
360
361
362
363
364
365
366
367
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()
Michael Yang's avatar
Michael Yang committed
368
	slices.Reverse(shape)
Michael Yang's avatar
Michael Yang committed
369
370

	var sb strings.Builder
371
372
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
373
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
Michael Yang's avatar
Michael Yang committed
374
375
		sb.WriteString("[")
		defer func() { sb.WriteString("]") }()
376
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
377
			if i >= items && i < dims[0]-items {
Michael Yang's avatar
Michael Yang committed
378
				sb.WriteString("..., ")
Michael Yang's avatar
Michael Yang committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
Michael Yang's avatar
Michael Yang committed
393
394
395
396
397
398
				text := fn(s[stride+i])
				if len(text) > 0 && text[0] != '-' {
					sb.WriteString(" ")
				}

				sb.WriteString(text)
Michael Yang's avatar
Michael Yang committed
399
				if i < dims[0]-1 {
Michael Yang's avatar
Michael Yang committed
400
					sb.WriteString(", ")
Michael Yang's avatar
Michael Yang committed
401
402
403
404
405
406
407
408
409
410
411
412
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
413
414
415
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
416
417
	DTypeQ80
	DTypeQ40
Michael Yang's avatar
Michael Yang committed
418
419
	DTypeI32
)