README.md 20.6 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Yuge Zhang's avatar
Yuge Zhang committed
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration-test-local?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=17&branchName=master)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

17
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate** <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>.
18

Scarlett Li's avatar
Scarlett Li committed
19
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a>, <a href="docs/en_US/TrainingService/DLTSMode.md">DLWorkspace (aka. DLTS)</a> and other cloud options.
20
21
22
23
24

## **Who should consider using NNI**

* Those who want to **try different AutoML algorithms** in their training code/model.
* Those who want to run AutoML trial jobs **in different environments** to speed up search.
Scarlett Li's avatar
Scarlett Li committed
25
* Researchers and data scientists who want to easily **implement and experiment new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
26
* ML Platform owners who want to **support AutoML in their platform**.
27

SparkSnail's avatar
SparkSnail committed
28
### **[NNI v1.6 has been released!](https://github.com/microsoft/nni/releases) &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
29

30
## **NNI capabilities in a glance**
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
31

Vaggelis Gkiastas's avatar
Vaggelis Gkiastas committed
32
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiments. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in state-of-the-art AutoML algorithms and out of box support for popular training platforms.
33
34
35

Within the following table, we summarized the current NNI capabilities, we are gradually adding new capabilities and we'd love to have your contribution.

QuanluZhang's avatar
QuanluZhang committed
36
<p align="center">
Lijiao's avatar
Lijiao committed
37
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
38
</p>
39

QuanluZhang's avatar
QuanluZhang committed
40
41
<table>
  <tbody>
42
    <tr align="center" valign="bottom">
43
44
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
45
      <td>
46
        <b>Frameworks & Libraries</b>
47
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
48
49
      </td>
      <td>
50
        <b>Algorithms</b>
51
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
52
53
      </td>
      <td>
Gems's avatar
Gems committed
54
        <b>Training Services</b>
55
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
56
57
      </td>
    </tr>
58
    </tr>
QuanluZhang's avatar
QuanluZhang committed
59
    <tr valign="top">
60
61
62
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
63
      <td>
64
      <ul><li><b>Supported Frameworks</b></li>
65
66
67
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
68
          <li>TensorFlow</li>
69
70
          <li>MXNet</li>
          <li>Caffe2</li>
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
86
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
87
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
88
89
90
91
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
92
           <li><a href="docs/en_US/TrialExample/EfficientNet.md">EfficientNet</a></li>
gxiaotian's avatar
gxiaotian committed
93
           <li><a href="docs/en_US/TrialExample/OpEvoExamples.md">Kernel Tunning</li></a>
94
95
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
96
97
        </ul>
      </td>
98
      <td align="left" >
99
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
100
        <ul>
101
          <b>Exhaustive search</b>
102
          <ul>
103
104
105
106
107
108
109
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
110
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>
111
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
112
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PBTTuner">PBT</a></li>
113
          </ul>
114
115
          <b>Bayesian optimization</b>
            <ul>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
116
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>
117
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
118
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li>
119
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
120
121
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a></li>
            </ul>
122
123
124
125
126
127
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
128
          <ul>
129
            <ul>
130
131
132
133
134
135
              <li><a href="docs/en_US/NAS/ENAS.md">ENAS</a></li>
              <li><a href="docs/en_US/NAS/DARTS.md">DARTS</a></li>
              <li><a href="docs/en_US/NAS/PDARTS.md">P-DARTS</a></li>
              <li><a href="docs/en_US/NAS/CDARTS.md">CDARTS</a></li>
              <li><a href="docs/en_US/NAS/SPOS.md">SPOS</a></li>
              <li><a href="docs/en_US/NAS/Proxylessnas.md">ProxylessNAS</a></li>
136
137
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a></li>
              <li><a href="docs/en_US/NAS/TextNAS.md">TextNAS</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
138
            </ul>
139
          </ul>
140
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
141
          <ul>
142
143
144
145
146
147
148
149
150
151
152
            <b>Pruning</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>Quantization</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
153
154
155
156
157
158
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
159
160
161
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
162
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>
163
          </ul>
QuanluZhang's avatar
QuanluZhang committed
164
165
166
      </td>
      <td>
      <ul>
167
168
169
170
171
172
173
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
gxiaotian's avatar
gxiaotian committed
174
            <ul><li><a href="docs/en_US/TrainingService/DLTSMode.md">DLWorkspace (aka. DLTS)</a></li>
QuanluZhang's avatar
QuanluZhang committed
175
176
      </ul>
      </td>
177
    </tr>
178
179
180
181
182
183
184
185
186
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
QuanluZhang's avatar
QuanluZhang committed
187
        <li><a href="https://nni.readthedocs.io/en/latest/autotune_ref.html#trial">Python API</a></li>
188
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
QuanluZhang's avatar
QuanluZhang committed
189
         <li><a href="https://nni.readthedocs.io/en/latest/installation.html">Supported OS</a></li>
190
191
192
193
194
195
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
chicm-ms's avatar
chicm-ms committed
196
        <li><a href="docs/en_US/Tutorial/InstallCustomizedAlgos.md">Install Customized Algorithms as Builtin Tuners/Assessors/Advisors</a></li>
197
198
199
200
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
201
        <li><a href="docs/en_US/TrainingService/Overview.md">Support TrainingService</li>
202
203
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
204
205
      </td>
    </tr>
QuanluZhang's avatar
QuanluZhang committed
206
207
  </tbody>
</table>
208

209
## **Installation**
Chi Song's avatar
Chi Song committed
210

211
### **Install**
Chi Song's avatar
Chi Song committed
212

213
NNI supports and is tested on Ubuntu >= 16.04, macOS >= 10.14.1, and Windows 10 >= 1809. Simply run the following `pip install` in an environment that has `python 64-bit >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
214

215
Linux or macOS
Chi Song's avatar
Chi Song committed
216

Zejun Lin's avatar
Zejun Lin committed
217
```bash
Chi Song's avatar
Chi Song committed
218
python3 -m pip install --upgrade nni
219
```
Chi Song's avatar
Chi Song committed
220

221
Windows
Chi Song's avatar
Chi Song committed
222

223
```bash
Chi Song's avatar
Chi Song committed
224
python -m pip install --upgrade nni
225
```
Chi Song's avatar
Chi Song committed
226

QuanluZhang's avatar
QuanluZhang committed
227
If you want to try latest code, please [install NNI](https://nni.readthedocs.io/en/latest/installation.html) from source code.
Chi Song's avatar
Chi Song committed
228

QuanluZhang's avatar
QuanluZhang committed
229
For detail system requirements of NNI, please refer to [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationLinux.html#system-requirements) for Linux & macOS, and [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationWin.html#system-requirements) for Windows.
230

231
Note:
Chi Song's avatar
Chi Song committed
232

233
* If there is any privilege issue, add `--user` to install NNI in the user directory.
234
* Currently NNI on Windows supports local, remote and pai mode. Anaconda or Miniconda is highly recommended to install [NNI on Windows](docs/en_US/Tutorial/InstallationWin.md).
235
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md). For FAQ on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/InstallationWin.md#faq).
236

237
### **Verify installation**
Chi Song's avatar
Chi Song committed
238

239
The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is used** when running it.
Chi Song's avatar
Chi Song committed
240
241
242

* Download the examples via clone the source code.

243
  ```bash
SparkSnail's avatar
SparkSnail committed
244
  git clone -b v1.6 https://github.com/Microsoft/nni.git
245
  ```
Chi Song's avatar
Chi Song committed
246
247
248

* Run the MNIST example.

249
  Linux or macOS
Chi Song's avatar
Chi Song committed
250

251
252
253
  ```bash
  nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
  ```
Chi Song's avatar
Chi Song committed
254

255
  Windows
Chi Song's avatar
Chi Song committed
256

257
258
259
  ```bash
  nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
  ```
Chi Song's avatar
Chi Song committed
260

261
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
262

Chi Song's avatar
Chi Song committed
263
```text
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
280
281
282
283
284
285
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
286
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
287
```
Scarlett Li's avatar
Scarlett Li committed
288

289
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
290
291
292
293
294
295

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
296
## **Documentation**
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
297
298
299

* To learn about what's NNI, read the [NNI Overview](https://nni.readthedocs.io/en/latest/Overview.html).
* To get yourself familiar with how to use NNI, read the [documentation](https://nni.readthedocs.io/en/latest/index.html).
300
* To get started and install NNI on your system, please refer to [Install NNI](https://nni.readthedocs.io/en/latest/installation.html).
Chi Song's avatar
Chi Song committed
301

302
303
## **Contributing**
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
304

305
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
Scarlett Li's avatar
Scarlett Li committed
306

307
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the Code of [Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact opencode@microsoft.com with any additional questions or comments.
308

309
After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI developer tutorials to get start:
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
310

Scarlett Li's avatar
Scarlett Li committed
311
* We recommend new contributors to start with simple issues: ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22).
312
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
313
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
Scarlett Li's avatar
Scarlett Li committed
314
* If you have any questions on usage, review [FAQ](https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/FAQ.md) first, if there are no relevant issues and answers to your question, try contact NNI dev team and users in [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) or [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
315
* [Customize your own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
316
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)
317
* [Implement a new NAS trainer on NNI](docs/en_US/NAS/Advanced.md)
318
* [Customize your own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
319

rabbit008's avatar
rabbit008 committed
320
321
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
322

323
* ### **External Repositories** ###
Lijiaoa's avatar
Lijiaoa committed
324
   * Run [ENAS](examples/nas/enas/README.md) with NNI
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
325
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI
326
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
327
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
328
329
330
331
332
333
* ### **Relevant Articles** ###
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
334
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
335
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
Scarlett Li's avatar
Scarlett Li committed
336
  * **Blog (in Chinese)** - [A summary of NNI new capabilities in 2019](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc
337
338

## **Feedback**
339
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
340
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
JSong-Jia's avatar
JSong-Jia committed
341
342
343
344
345
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.

Join IM discussion groups:
|Gitter||WeChat|
|----|----|----|
346
|![image](https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png)| OR |![image](https://github.com/scarlett2018/nniutil/raw/master/wechat.png)|
JSong-Jia's avatar
JSong-Jia committed
347

Chi Song's avatar
Chi Song committed
348

349
## Related Projects
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
350

351
352
353
354
355
356
357
358
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
359

Chi Song's avatar
Chi Song committed
360
361
## **License**

362
The entire codebase is under [MIT license](LICENSE)